14.如圖.正方體ABCD-A1B1C1D1的棱長為1.E是A1B1的中點.則下列四個命題: 查看更多

 

題目列表(包括答案和解析)

如圖,正方體ABCD-A1B1C1D1的棱長為1,E是A1B1的中點,則E到平面ABC1D1的距離為

[     ]

A.
B.
C.
D.

查看答案和解析>>

如圖,正方體ABCD-A1B1C1D1的棱長為1,E是A1B1的中點,則E到平面ABC1D1的距離為

[     ]

A.
B. 
C. 
D.

查看答案和解析>>

如圖,正方體ABCD—A1B1C1D1的棱長為1,EF、MN分別是A1B1、BCC1D1、B1C1的中點.

(1)用向量方法求直線EFMN的夾角;

(2)求直線MF與平面ENF所成角的余弦值;

(3)求二面角N-EF-M的平面角的正切值.

查看答案和解析>>

8、如圖,正方體ABCD-A1B1C1D1的棱長為2,動點E、F在棱A1B1上.點Q是CD的中點,動點P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),則三棱錐P-EFQ的體積(  )

查看答案和解析>>

如圖,正方體ABCD—A1B1C1D1的棱長為2,動點E、F在棱A1B1上。點Q是CD的中點,動點P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),則三棱錐P-EFQ的體積(   )

 

 

A.與x,y都有關(guān);         B.與x,y都無關(guān);

C.與x有關(guān),與y無關(guān);    D.與y有關(guān),與x無關(guān);

 

查看答案和解析>>

一、選擇題:BCCAC  ABCBC

二、填空題:

11.                 12. 0.94                 13.            14. ②③④

三、解答題:

15解:(1)在二項式中展開式的通項

    

依題意  12-3r=0,   r=4.          ……………………5分

常數(shù)項是第5項.                   ……… ……………7分

(2)第r項的系數(shù)為

  ∴  ∴   ……10分

∴ 的取值范圍 .          ……14分

16.解:(1)抽出的產(chǎn)品中正品件數(shù)不少于次品件數(shù)的

可能情況有                        ----------2分

從這7件產(chǎn)品中一次性隨機抽出3件的所有可能有----------4分

      抽出的產(chǎn)品中正品件數(shù)不少于次品件數(shù)的概率為       ----------7分

1

2

3

 

P

(2)

         

----10分

                  -------14分

17解: (1)記“甲投籃1次投進”為事件A1,“乙投籃1次投進”為事件A2,“丙投籃1次投進”為事件A3,“3人都沒有投進”為事件A.則 P(A1)= ,P(A2)= ,P(A3)= ,

∴ P(A) = P()=P()?P()?P()

= [1-P(A1)] ?[1-P (A2)] ?[1-P (A3)]=(1-)(1-)(1-)=          ---------6分

∴3人都沒有投進的概率為 .                                       --------7分

(2)解法一: 隨機變量ξ的可能值有0,1,2,3), ξ~ B(3, ), ---------9分

P(ξ=k)=C3k()k()3k  (k=0,1,2,3)         ---------11分

 Eξ=np = 3× = .      ---------14分

ξ

0

1

2

3

P

解法二: ξ的概率分布為: 

 

 

 

Eξ=0×+1×+2×+3×=   .

18.解:(1)作AD的中點O,則VO⊥底面ABCD.建立如圖空間直角坐標系,并設(shè)正方形邊長為1,則A(,0,0),B(,1,0),C(-,1,0),D(-,0,0),V(0,0,)                                    ……3分

…4分

……5分

……6分

又AB∩AV=A  ∴AB⊥平面VAD…………………7分

(2)由(Ⅰ)得是面VAD的法向量,設(shè)是面VDB的法向量,則

……10分

,…………………………………12分

又由題意知,面VAD與面VDB所成的二面角,所以其大小為………14分

19.解:(1),,

猜測:

……(6分)

(2)用數(shù)學(xué)歸納法證明如下:

    ① 當時,,,等式成立;……(8分)

 、 假設(shè)當時等式成立,即,

成立,……(9分)

那么當時,

    ,

時等式也成立.……(13分)

由①,②可得,對一切正整數(shù)都成立.……(14分)

20.解:(1)     ……(3分)

(2)M到達(0,n+2)有兩種情況……(5分)

……(8分)

(3)數(shù)列為公比的等比數(shù)列

……(14分)

 


同步練習(xí)冊答案