bn=(bn-bn-1)+(bn-1-bn-2)+­­­­­­­­­­­???+(b2-b1)+b1=2n-1+2n-2+???+2+1= 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列an的前n項和Sn滿足條件2Sn=3(an-1),其中n∈N*
(1)求證:數(shù)列an成等比數(shù)列;
(2)設數(shù)列bn滿足bn=log3an.若 tn=
1bnbn+1
,求數(shù)列tn的前n項和.

查看答案和解析>>

等比數(shù)列{an}的前n項和為Sn,已知對任意的n∈N+,點(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù)的圖象上.
(Ⅰ)求r的值.
(Ⅱ)當b=2時,記bn=2(log2an=1)(n∈N+),證明:對任意的,不等式成立
b1+1
b1
b2+1
b2
•…
bn+1
bn
n+1

查看答案和解析>>

設a1=2,an+1=
2
an+1
,bn=
|an+2|
|an-1|
,n∈N+,則數(shù)列{bn}的通項公式bn=
 

查看答案和解析>>

已知數(shù)列{an}的前n項和Sn=-an-(
1
2
n-1+2(n∈N*).
(1)令bn=2nan,求證:數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式.
(2)令cn=
n+1
n
an,Tn=c1+c2+…+cn
,試比較Tn
5n
2n+1
的大小,并予以證明.

查看答案和解析>>

已知數(shù)列{an}的前n項和Sn,對一切正整數(shù)n,點(n,Sn)都在函數(shù)f(x)=2x+2-4的圖象上.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=an•log2an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>


同步練習冊答案