(C)1或 (D)或2 查看更多

 

題目列表(包括答案和解析)

(文科)實數x滿足|x2-x-2|+|
1
x
|=|(x2-x-2)+
1
x
|
,則x的范圍為(  )
A、{x|x<2或x<-1}
B、{x|0<x.<2或x<-1}
C、{x|-1≤x≤0或x≥2}
D、{x|-1≤x<0或x≥2}

查看答案和解析>>

8、“a≠1或b≠2”是“a+b≠3”的(  )

查看答案和解析>>

(2013•濟南一模)某學生參加某高校的自主招生考試,須依次參加A、B、C、D、E五項考試,如果前四項中有兩項不合格或第五項不合格,則該考生就被淘汰,考試即結束;考生未被淘汰時,一定繼續(xù)參加后面的考試.已知每一項測試都是相互獨立的,該生參加A、B、C、D四項考試不合格的概率均為
1
2
,參加第五項不合格的概率為
2
3
,
(1)求該生被錄取的概率;
(2)記該生參加考試的項數為X,求X的分布列和期望.

查看答案和解析>>

(2008•佛山二模)某物流公司購買了一塊長AM=30米、寬AN=20米的矩形地塊,規(guī)劃建設占地如圖中矩形ABCD的倉庫,其余地方為道路或停車場,要求頂點C在地塊對角線MN上,頂點B,D分別在邊AM,AN上,設AB長度為x米.
(1)要使倉庫占地面積不小于144平方米,求x的取值范圍;
(2)若規(guī)劃建設的倉庫是高度與AB的長度相等的長方體建筑,問AB的長度是多少時,倉庫的庫容量最大?(墻地及樓板所占空間忽略不計)

查看答案和解析>>

(2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,已知AB,CD是圓O的兩條弦,且AB是線段CD的 垂直平分線,若AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M=
21
1a
的一個特征值是3,求直線x-2y-3=0在M作用下的新直線方程.
C.選修4-4:坐標系與參數方程(本小題滿分10分)
在平面直角坐標系xOy中,已知曲線C的參數方程是
x=cosα
y=sinα+1
(α是參數),若以O為極點,x軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線C的極坐標方程.
D.選修4-5:不等式選講(本小題滿分10分)
已知關于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實數a的取值范圍.

查看答案和解析>>

一、選擇題(本大題共10小題,每小題5分,共50分)

   1~5  C B D C D     6~10  A C A B B

二、填空題(本大題共6小題,每小題4分,共24分)

11. ;      12 . ;       13.  31;  

14. ;       15. ;             16.-,0 .

三、解答題(本大題共6小題,共76分)

17.(本題滿分13分)

解:(Ⅰ)當a=2時,A=,          …………………………2分

B=                            …………………………4分

∴ AB=                      …………………………6分

(Ⅱ)∵(a2+1)-a=(a-)2>0,即a2+1>a

∴B={x|a<x<a2+1}                            ……………………7分

①當3a+1=2,即a=時A=Φ,不存在a使BA      ……………………8分

②當3a+1>2,即a>時A={x|2<x<3a+1}

由BA得:2≤a≤3             …………………10分

③當3a+1<2,即a<時A={x|3a+1<x<2}

由BA得-1≤a≤-                  …………………12分

綜上,a的范圍為:[-1,-]∪[2,3]                        …………………13分

18.(本題滿分13分)

解:(Ⅰ)由………4分

的值域為[-1,2]           ……………………7分

(Ⅱ)∵

                   ………………10分

………………13分

19. (本題滿分13分)

解:(Ⅰ) ,,              ……………………2分

在公共點處的切線相同

由題意 

                             ……………………4分

得:,或(舍去) 

即有                 ……………………6分

(Ⅱ)設,……………………7分

            ……………………9分

x<0,x>0

為減函數,在為增函數,             ……………………11分

于是函數上的最小值是:F(a)=f(a)-g(a)=0     ……………………12分

故當時,有,

所以,當時,                            ……………………13分

20. (本題滿分13分)

解:(Ⅰ)選取的5只恰好組成完整“奧運吉祥物”的概率

                         ………………5分

(Ⅱ)                         …………………6分           

                                      …………10分

ξ的分布列為:

ξ

10

8

6

4

P

                                                                                              

                         …………13分

21.(本題滿分12分)

解:(Ⅰ)∵, ∴     …………………………1分

由y=解得:              …………………………2分

                    ………………………3分

(Ⅱ)由題意得:         …………………………4分

                   

∴{}是以=1為首項,以4為公差的等差數列. …………………………6分

,∴.          ………………………7分

(Ⅲ)∴………8分

,∴ {bn}是一單調遞減數列.      ………………………10分

,要使,則 ,∴

又kÎN*  ,∴k³8 ,∴kmin=8

即存在最小的正整數k=8,使得                 ……………………12分

22.(本題滿分12分)

解:(Ⅰ)由余弦定理得:   ……1分

即16=

所以

  ……………………………………………4分

(當動點P與兩定點A,B共線時也符合上述結論)

所以動點P的軌跡為以A,B為焦點,實軸長為的雙曲線

所以,軌跡G的方程為        …………………………………………6分

(Ⅱ)假設存在定點C(m,0),使為常數.

①當直線l不與x軸垂直時,設直線l的方程為

   …………………………………………7分

由題意知,

,則,  …………………8分

于是

             ………………9分

要是使得 為常數,當且僅當,此時 ………………11分

②當直線l與x軸垂直時,,當.

 故,在x軸上存在定點C(1,0) ,使得 為常數. …………………………12分

 

 

 


同步練習冊答案