(C) (D) (3)球的一個(gè)截面是半徑為3的圓.球心到這個(gè)截面的距離是4.則該球的表面積是 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,矩形ABCD與矩形AB′C′D全等,且所在平面所成的二面角為a,記兩個(gè)矩形對(duì)角線的交點(diǎn)分別為Q,Q′,AB=a,AD=b.
(1)求證:QQ′∥平面ABB′;
(2)當(dāng)b=
2
a
,且a=
π
3
時(shí),求異面直線AC與DB′所成的角;
(3)當(dāng)a>b,且AC⊥DB'時(shí),求二面角a的余弦值(用a,b表示).

查看答案和解析>>

知|
a
|=1,|
b
|=2,
a
b
的夾角為60°,
c
=3
a
+
b
,
d
a
-
b
,若
c
d
,則實(shí)數(shù)λ的值為( 。
A、
7
2
B、-
7
2
C、
7
4
D、-
7
4

查看答案和解析>>

某先生居住在城鎮(zhèn)的A處,準(zhǔn)備開(kāi)車到單位B處上班,若該地各路段發(fā)生堵車事件都是獨(dú)立的,且在同一路段發(fā)生堵車事件最多只有一次,發(fā)生堵車事件的概率,如圖.( 例如:A→C→D算作兩個(gè)路段:路段AC發(fā)生堵車事件的概率為
1
10
,路段CD發(fā)生堵車事件的概率為
1
15
).
(1)請(qǐng)你為其選擇一條由A到B的路線,使得途中發(fā)生堵車事件的概率最小;
(2)若記ξ路線A→(3)C→(4)F→(5)B中遇到堵車次數(shù)為隨機(jī)變量ξ,求ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

(2012•惠州一模)甲乙兩個(gè)學(xué)校高三年級(jí)分別有1200人,1000人,為了了解兩個(gè)學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)六校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩個(gè)學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組 [70,80) [80,90) [90,100) [100,110)
頻數(shù) 3 4 8 15
分組 [110,120) [120,130) [130,140) [140,150]
頻數(shù) 15 x 3 2
乙校:
分組 [70,80) [80,90) [90,100) [100,110)
頻數(shù) 1 2 8 9
分組 [110,120) [120,130) [130,140) [140,150]
頻數(shù) 10 10 y 3
(Ⅰ)計(jì)算x,y的值.
甲校 乙校 總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
(Ⅱ)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,請(qǐng)分別估計(jì)兩個(gè)學(xué)校數(shù)學(xué)成績(jī)的優(yōu)秀率.
(Ⅲ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫右面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩個(gè)學(xué)校的數(shù)學(xué)成績(jī)有差異.
參考數(shù)據(jù)與公式:
由列聯(lián)表中數(shù)據(jù)計(jì)算K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

臨界值表
P(K≥k0 0.10 0.05 0.010
k0 2.706 3.841 6.635

查看答案和解析>>

計(jì)算機(jī)中常用16進(jìn)制,采用數(shù)字0~9和字母A~F共16個(gè)計(jì)數(shù)符號(hào)與10進(jìn)制得對(duì)應(yīng)關(guān)系如下表:
16進(jìn)制 0 1 2 3 4 5 6 7 8 9 A B C D E F
10進(jìn)制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
例如用16進(jìn)制表示D+E=1B,則(2×F+1)×4=( 。

查看答案和解析>>

一、選擇題:

A卷:CCABD    BDCBB    AA

二、填空題:

(13)        (14)    (15)    (16)

三、解答題:

(17)解:

,知,又,由正弦定理,有

,∴,,……3分

  ……………5分

        

         …………8分

,,  ∴

故所求函數(shù)為,函數(shù)的值域?yàn)?sub>……………10分

(18)解:

      記顧客購(gòu)買一件產(chǎn)品,獲一等獎(jiǎng)為事件,獲二等獎(jiǎng)為事件,不獲獎(jiǎng)為事件,則,,

(Ⅰ)該顧客購(gòu)買2件產(chǎn)品,中獎(jiǎng)的概率

  ……………4分

  (Ⅱ)的可能值為0,20,40,100,120,200,其中

        ,

         ,

        ,……………8分

的分布列為

                                                                ……………10分

的期望

(元)…………………………………………………………………12分

(19)解法一:

      (Ⅰ)取中點(diǎn),連結(jié)、,則,

       又, ∴,四邊形是平行四邊形,

       ∴,又,,

       ∴ ……………………………………………………4分

      (Ⅱ)連結(jié)

        ∵,  ∴,

       又平面平面,∴

      而,  ∴

     作,則,且,的中點(diǎn)。

,連結(jié),則,

 于是為二面角的平面角!8分

,,∴,

在正方形中,作,則

,

,∴。

故二面角的大小為…………………………12分

 

 

 

 

 

 

 

 

 

 

    

解法二:如圖,以為原點(diǎn),建立空間直角坐標(biāo)系,使軸,、分別在軸、軸上。

(Ⅰ)由已知,,,,,

, ,

, ∴

,∴   ………………………………………4分

(Ⅱ)設(shè)為面的法向量,則,且

,,

,取,,則 ……………8分

為面的法向量,所以,

因?yàn)槎娼?sub>為銳角,所以其大小為…………………………12分

(20)解:

     (Ⅰ)  ……………………………………………………1分

      (1)當(dāng)時(shí),由,知單調(diào)遞增
         而,則不恒成立…………………………3分

       (2)當(dāng)時(shí),令,得

           當(dāng)時(shí),單調(diào)遞增;時(shí), ,單調(diào)遞減,處取得極大值。

   由于,所以,解得,即當(dāng)且僅當(dāng)時(shí)恒成立。

綜上,所求的值為   …………………………7分

(Ⅱ)等價(jià)于,

下證這個(gè)不等式成立。

由(Ⅰ)知,即……………9分

…………………………12分

(21)解:

(Ⅰ)曲線方程可寫為

設(shè),則,又設(shè)、

曲線在點(diǎn)處的切線斜率,則切線方程為

,亦即…………………………3分

分別將、坐標(biāo)代入切線方程得,

,

,得

,  ①

,  ②

……………7分

,∴,

則由②式得

從而曲線的方程為…………………………8分

(Ⅱ)軸與曲線、交點(diǎn)分別為、,此時(shí)……9分

當(dāng)、不在軸上時(shí),設(shè)直線方程為

,則在第一象限,

,得,由,

………………………………………11分

因?yàn)榍都關(guān)于軸對(duì)稱,所以當(dāng)時(shí),仍有

綜上,題設(shè)的為定值…………………………12分

(22)解:

      (Ⅰ)由,且,得

當(dāng)時(shí), ,解得;

當(dāng)時(shí),,解得

猜想:……………………………………………………2分

用數(shù)學(xué)歸納法證明如下

(1)       當(dāng)時(shí),命題顯然成立!3分

(2)       假設(shè)當(dāng)時(shí)命題成立,即,那么

         由,得

       

              于是,當(dāng)時(shí)命題仍然成立………………………………………6分

根據(jù)(1)和(2),對(duì)任何,都有…………………………7分

(Ⅱ)當(dāng)時(shí),,且對(duì)于也成立。

因此,

對(duì)于,由,得

,……………10分

,

綜上,………………………………………12分

 

 

 


同步練習(xí)冊(cè)答案