(Ⅲ)證明. 2004年普通高等學校招生全國統(tǒng)一考試 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)已知函數(shù)f(x)=
x
x+1
.數(shù)列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數(shù)列{bn}的前n項和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數(shù)列{bn}的通項公式;并判斷b4+b6是否仍為數(shù)列{bn}中的項?若是,請證明;否則,說明理由.
(Ⅱ)設(shè){cn}為首項是c1,公差d≠0的等差數(shù)列,求證:“數(shù)列{cn}中任意不同兩項之和仍為數(shù)列{cn}中的項”的充要條件是“存在整數(shù)m≥-1,使c1=md”.

查看答案和解析>>

精英家教網(wǎng)如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱ABCD-A1B1C1D1中,P是側(cè)棱CC1上的一點,CP=m.
(Ⅰ)試確定m,使直線AP與平面BDD1B1所成角為60°;
(Ⅱ)在線段A1C1上是否存在一個定點Q,使得對任意的m,D1Q⊥AP,并證明你的結(jié)論.

查看答案和解析>>

證明:過拋物線y=a(x-x1)•(x-x2)(a≠0,x1<x2)上兩點A(x1,0)、B(x2,0)的切線,與x軸所成的銳角相等.

查看答案和解析>>

精英家教網(wǎng)如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,E、F是AA1、AB的中點.
(Ⅰ)證明:直線EE1∥平面FCC1;
(Ⅱ)求二面角B-FC1-C的余弦值.

查看答案和解析>>

等比數(shù)列{an}的前n項和為Sn,已知對任意的n∈N+,點(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù)的圖象上.
(Ⅰ)求r的值.
(Ⅱ)當b=2時,記bn=2(log2an=1)(n∈N+),證明:對任意的,不等式成立
b1+1
b1
b2+1
b2
•…
bn+1
bn
n+1

查看答案和解析>>

 

一、選擇題:本題考查基本知識和基本運算,每小題5分,滿分60分.

(1)A      (2)B     (3)D     (4)C      (5)A    (6)B

(7)C      (8)A     (9)D     (10)C     (11)B    (12)A

二、填空題:本題考查基本知識和基本運算,每小題4分,滿分16分.

(13)                         (14)

(15)2                                        (16)

三、解答題

(17)本小題主要考查三角函數(shù)的基本公式和三角函數(shù)的恒等變換等基本知識,以及推理能力和運算能力.滿分12分.

      解:由已知.

  

      從而 

.

(18)本小題主要考查線面關(guān)系和正方體性質(zhì)等基本知識,考查空間想象能力和推理論證能力.滿分12分.

      解法一:(I)連結(jié)BP.

      ∵AB⊥平面BCC1B1,  ∴AP與平面BCC1B1所成的角就是∠APB,

      ∵CC1=4CP,CC1=4,∴CP=I.

      在Rt△PBC中,∠PCB為直角,BC=4,CP=1,故BP=.

      在Rt△APB中,∠ABP為直角,tan∠APB=

      ∴∠APB=

(19)本小題主要考查簡單線性規(guī)劃的基本知識,以及運用數(shù)學知識解決實際問題的能力.滿分12分.

      解:設(shè)投資人分別用x萬元、y萬元投資甲、乙兩個項目.

      由題意知

      目標函數(shù)z=x+0.5y.

      上述不等式組表示的平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.

<source id="kfuyr"><dfn id="kfuyr"></dfn></source>

      <small id="kfuyr"></small>

            與可行域相交,其中有一條直線經(jīng)過可行域上的M點,且

            與直線的距離最大,這里M點是直線

            和的交點.

             解方程組 得x=4,y=6

            此時(萬元).

                x=4,y=6時z取得最大值.

            答:投資人用4萬元投資甲項目、6萬元投資乙項目,才能在確保虧損不超過1.8萬元的前提下,使可能的盈利最大.

      (20)本小題主要考查數(shù)列的基本知識,以及運用數(shù)學知識分析和解決問題的能力.滿分12分.

            解:(I)當時,

                   

             由,

             即              又.

             (II)設(shè)數(shù)列{an}的公差為d,則在中分別取k=1,2,得

    1. (1)

      (2)

             由(1)得

             當

             若成立

             若

                故所得數(shù)列不符合題意.

             當

             若

             若.

             綜上,共有3個滿足條件的無窮等差數(shù)列:

             ①{an} : an=0,即0,0,0,…;

             ②{an} : an=1,即1,1,1,…;

             ③{an} : an=2n-1,即1,3,5,…,

      (21)本小題主要考查直線、橢圓和向量等基本知識,以及推理能力和運算能力.滿分12分.

             解:(I)設(shè)所求橢圓方程是

             由已知,得    所以.

             故所求的橢圓方程是

             (II)設(shè)Q(),直線

             當由定比分點坐標公式,得

            

             .

             于是   故直線l的斜率是0,.

      (22)本小題主要考查函數(shù)、不等式等基本知識,以及綜合運用數(shù)學知識解決問題的能力.滿分14分.

             證明:(I)任取 

             和  ②

             可知 ,

             從而 .  假設(shè)有①式知

            

             ∴不存在

             (II)由                        ③

             可知   ④

             由①式,得   ⑤

             由和②式知,   ⑥

             由⑤、⑥代入④式,得

                                

      (III)由③式可知

        (用②式)

             (用①式)


      同步練習冊答案