在中....求的值和的面積 查看更多

 

題目列表(包括答案和解析)

中,角的對邊分別為

(1)求的值;

(2)求的面積.

【解析】本試題主要是考查了解三角形中正弦定理和三角形面積公式的運(yùn)用。

 

查看答案和解析>>

(本小題滿分12分)

設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=3。

(Ⅰ)求f(x)的解析式:

(Ⅱ)證明:函數(shù)y=f(x)的圖像是一個中心對稱圖形,并求其對稱中心;

(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,并求出此定值。

查看答案和解析>>

(本小題滿分12分)

如圖,在棱長為1的正方體中,AP=BQ=b(0<b<1),截面PQEF,截面PQGH

(Ⅰ)證明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,

并求出這個值;

(Ⅲ)若與平面PQEF所成的角為,求與平

PQGH所成角的正弦值.

查看答案和解析>>

(本小題共14分)

    已知橢圓的中點(diǎn)在原點(diǎn)O,焦點(diǎn)在x軸上,點(diǎn)是其左頂點(diǎn),點(diǎn)C在橢圓上且

   (I)求橢圓的方程;

   (II)若平行于CO的直線和橢圓交于M,N兩個不同點(diǎn),求面積的最大值,并求此時直線的方程.

查看答案和解析>>

(本小題滿分12分)如圖,在棱長為1的正方體中,AP=BQ=b(0<b<1),截面PQEF,截面PQGH

(Ⅰ)證明:平面PQEF和平面PQGH互相垂直;

(Ⅱ)證明:截面PQEF和截面PQGH面積之和是定值,

并求出這個值;

(Ⅲ)若,求與平面PQEF所成角的正弦值.

查看答案和解析>>

 

一、 選擇題:本大題主要考查基本知識和基本運(yùn)算.每小題5分,滿分40分.

(1)D   (2)C    (3)A   (4)A    (5)B    (6)D   (7)C   (8)B

二、填空題:本大題主要考查基本知識和基本運(yùn)算.每小題5分,滿分30分.

(9)   

(10)

(11)(0,1),

(12)  

(13)大    -3

(14)3    52

三、解答題:本大題共6小題,共80分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

(15)本小題主要考查三角恒等變形、三角形面積公式等基本知識,考查運(yùn)算能力.滿分14分.

    解法一:

   

    又,

   

   

    .

    解法二:

             (1)

    

    ,

     .   (2)

    (1)+(2)得:.

    (1)-(2)得:.

    .

    (以下同解法一)

(16)本小題主要考查直線與平面的位置關(guān)系、棱柱等基本知識,考查空間想象能力、邏輯思維能力和運(yùn)算能力.滿分14分.

    解:(I)正三棱柱的側(cè)面展開圖是長為6,寬為2的矩形

    其對角線長為.

    (II)如圖,將側(cè)面繞棱旋轉(zhuǎn)使其與側(cè)面在同一平面上,點(diǎn)B運(yùn)動到點(diǎn)D的位置,連接于M,則就是由頂點(diǎn)B沿棱柱側(cè)面經(jīng)過棱到頂點(diǎn)C1的最短路線,其長為

    .

    ,

    故.

    (III)連接DB,,則DB就是平面與平面ABC的交線

    在中,

   

    又,

    由三垂線定理得.

    就是平面與平面ABC所成二面角的平面角(銳角),

    側(cè)面是正方形,

    .

    故平面與平面ABC所成的二面角(銳角)為.

 (17)本小題主要考查直線、拋物線等基本知識,考查運(yùn)用解析幾何的方法分析問題和解決問題的能力.滿分14分.

    解:(I)由已知條件,可設(shè)拋物線的方程為.

    點(diǎn)P(1,2)在拋物線上,

    ,得.

    故所求拋物線的方程是,

    準(zhǔn)線方程是.

    (II)設(shè)直線PA的斜率為,直線PB的斜率為,

    則.

    PA與PB的斜率存在且傾斜角互補(bǔ),

    .

    由A(),B()在拋物線上,得

        ,(1)

    ,     (2)

   

    由(1)-(2)得直線AB的斜率

   

 (18)本小題主要考查函數(shù)、數(shù)列等基本知識,考查分析問題和解決問題的能力.滿分14分.

    解:(I)由,得.

    由,得.

    同理,.

    歸納得

    (II)當(dāng)時,,

    ,

    ,

    .

    所以是首項(xiàng)為,公比為的等比數(shù)列.

    所以.

(19)本小題主要考查解不等式等基本知識,考查應(yīng)用數(shù)學(xué)知識分析問題和解決問題的能力.滿分12分.

    解:(I)列車在B,C兩站的運(yùn)行誤差(單位:分鐘)分別是

   

    (II)由于列車在B,C兩站的運(yùn)行誤差之和不超過2分鐘,所以

        (*)

    當(dāng)時,(*)式變形為,

    解得;

    當(dāng)時,(*)式變形為,

    解得;

    當(dāng)時,(*)式變形為,

    解得

    綜上所述,的取值范圍是[39,].

 (20)本小題主要考查不等式的證明等基本知識,考查邏輯思維能力、分析問題和解決問題的能力.滿分12分.

    解:(I).除第N組外的每組至少含有個數(shù).

    (II)當(dāng)?shù)趎組形成后,因?yàn)?sub>,所以還有數(shù)沒分完,這時余下的每個數(shù)必大于余差,余下數(shù)之和也大于第n組的余差,即

    ,

    由此可得.

    因?yàn)?sub>,所以.

    (III)用反證法證明結(jié)論,假設(shè),即第11組形成后,還有數(shù)沒分完,由(I)和(II)可知,余下的每個數(shù)都大于第11組的余差,且,

    故余下的每個數(shù) .   (*)

    因?yàn)榈?1組數(shù)中至少含有3個數(shù),所以第11組數(shù)之和大于,

    此時第11組的余差,

    這與(*)式中矛盾,所以.

 


同步練習(xí)冊答案