題目列表(包括答案和解析)
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;
(Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有(本小題滿分12分)
已知數(shù)列{} 的前n項和,數(shù)列{}的前n項和
(Ⅰ)求數(shù)列{}與{}的通項公式;
(Ⅱ)設(shè),證明:當(dāng)且僅當(dāng)n≥3時,< w.w.w.k.s.5.u.c.o.m
. (本小題滿分12分)設(shè)函數(shù)(為常數(shù),),若,且只有一個實數(shù)根.(Ⅰ)求的解析式;(Ⅱ)若數(shù)列滿足關(guān)系式:(且),又,證明數(shù)列是等差數(shù)列并求的通項公式;
(本小題滿分13分)
已知數(shù)列滿足:,
(I)求得值;
(II)設(shè)求證:數(shù)列是等比數(shù)列,并求出其通項公式;
(III)對任意的,在數(shù)列中是否存在連續(xù)的項構(gòu)成等差數(shù)列?若存在,寫出這項,并證明這項構(gòu)成等差數(shù)列;若不存在,說明理由.
(本小題滿分14分)設(shè)函數(shù)f (x)滿足f (0) =1,且對任意,都有f (xy+1) = f (x) f (y)-f (y)-x+2.(I) 求f (x) 的解析式;(II) 若數(shù)列{an}滿足:an+1=3f (an)-1(n ?? N*),且a1=1,求數(shù)列{an}的通項公式;
(Ⅲ)求數(shù)列{an}的前n項和Sn.
一 選擇題
(1)B (2)C (3)B (4)B (5)D (6)A
(7)A (8)C (9)D (10)C (11)B (12)C
二 填空題
(13) (14) (15) (16)1
三、解答題
(17)本小題主要考查指數(shù)和對數(shù)的性質(zhì)以及解方程的有關(guān)知識. 滿分12分.
解:
(無解). 所以
(18)本小題主要考查同角三角函數(shù)的基本關(guān)系式、二倍角公式等基礎(chǔ)知識以及三角恒等變形的能力. 滿分12分.
解:原式
因為
所以 原式.
因為為銳角,由.
所以 原式
因為為銳角,由
所以 原式
(19)本小題主要考查等差數(shù)列的通項公式,前n項和公式等基礎(chǔ)知識,根據(jù)已知條件列方程以及運算能力.滿分12分.
解:設(shè)等差數(shù)列的公差為d,由及已知條件得
, ①
②
由②得,代入①有
解得 當(dāng)舍去.
因此
故數(shù)列的通項公式
(20)本小題主要考查把實際問題抽象為數(shù)學(xué)問題,應(yīng)用不等式等基礎(chǔ)知識和方法解決問題的能力. 滿分12分.
解:設(shè)矩形溫室的左側(cè)邊長為a m,后側(cè)邊長為b m,則
蔬菜的種植面積
所以
當(dāng)
答:當(dāng)矩形溫室的左側(cè)邊長為40m,后側(cè)邊長為20m時,蔬菜的種植面積最大,最大種植面積為648m2.
(21)本小題主要考查兩個平面垂直的性質(zhì)、二面角等有關(guān)知識,以有邏輯思維能力和空間想象能力. 滿分12分.
|