記.由題設(shè)可得點(diǎn)A.B的坐標(biāo).是方程組 ②① 查看更多

 

題目列表(包括答案和解析)

如圖,已知直線)與拋物線和圓都相切,的焦點(diǎn).

(Ⅰ)求的值;

(Ⅱ)設(shè)上的一動(dòng)點(diǎn),以為切點(diǎn)作拋物線的切線,直線軸于點(diǎn),以為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為,    直線軸交點(diǎn)為,連接交拋物線、兩點(diǎn),求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去)

設(shè)與拋物線的相切點(diǎn)為,又,得,.     

代入直線方程得:,∴    所以

第二問中,由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線

第三問中,設(shè)直線,代入結(jié)合韋達(dá)定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去).     …………………(2分)

設(shè)與拋物線的相切點(diǎn)為,又,得.     

代入直線方程得:,∴    所以,.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911460473385651/SYS201207091146532963151648_ST.files/image007.png">是定點(diǎn),所以點(diǎn)在定直線上.…(2分)

(Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

的面積范圍是

 

查看答案和解析>>

已知中,,.設(shè),記.

(1)   求的解析式及定義域;

(2)設(shè),是否存在實(shí)數(shù),使函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image010.png">?若存在,求出的值;若不存在,請(qǐng)說明理由.

【解析】第一問利用(1)如圖,在中,由,,

可得,

又AC=2,故由正弦定理得

 

(2)中

可得.顯然,,則

1當(dāng)m>0的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">m+1=3/2,n=1/2

2當(dāng)m<0,不滿足的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">;

因而存在實(shí)數(shù)m=1/2的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236439995110628_ST.files/image021.png">.

 

查看答案和解析>>

已知,設(shè)是方程的兩個(gè)根,不等式對(duì)任意實(shí)數(shù)恒成立;函數(shù)有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了命題和函數(shù)零點(diǎn)的運(yùn)用。由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3. 當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”為真命題,只需P真Q真即可。

解:由題設(shè)x1+x2=a,x1x2=-2,

∴|x1-x2|=.

當(dāng)a∈[1,2]時(shí),的最小值為3.

要使|m-5|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立,只須|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判別式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

綜上,要使“P∧Q”為真命題,只需P真Q真,即

解得實(shí)數(shù)m的取值范圍是(4,8]

 

查看答案和解析>>

已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項(xiàng)和

【解析】第一問,因?yàn)橛深}設(shè)可知

 故

,又由題設(shè)    從而

第二問中,

當(dāng)時(shí),,時(shí)

時(shí), 

時(shí),

分別討論得到結(jié)論。

由題設(shè)可知

 故

,又由題設(shè)   

從而……………………4分

(2)

當(dāng)時(shí),,時(shí)……………………6分

時(shí),……8分

時(shí),

 ……………………10分

綜上可得 

 

查看答案和解析>>

已知曲線的參數(shù)方程是是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:的極坐標(biāo)方程是=2,正方形ABCD的頂點(diǎn)都在上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,).

(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);

 (Ⅱ)設(shè)P為上任意一點(diǎn),求的取值范圍.

【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.

【解析】(Ⅰ)由已知可得,

,

即A(1,),B(-,1),C(―1,―),D(,-1),

(Ⅱ)設(shè),令=,

==,

,∴的取值范圍是[32,52]

 

查看答案和解析>>


同步練習(xí)冊(cè)答案