(1)求.并根據(jù)棋子跳到第站的情況.試用表示, 查看更多

 

題目列表(包括答案和解析)

設(shè)事件A發(fā)生的概率為P,若在A發(fā)生的條件下B發(fā)生的概率為P′,則由A產(chǎn)生B的概率為PP′,根據(jù)這一規(guī)律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設(shè)棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動一次,若硬幣出現(xiàn)正面則棋子向前跳動一站,出現(xiàn)反面則向前跳動兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r,游戲結(jié)束.已知硬幣出現(xiàn)正反面的概率都為數(shù)學(xué)公式
(1)求P1,P2,P3,并根據(jù)棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列,并求出{an}的通項公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

設(shè)事件A發(fā)生的概率為P,若在A發(fā)生的條件下B發(fā)生的概率為P′,則由A產(chǎn)生B的概率為PP′,根據(jù)這一規(guī)律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設(shè)棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P=1),由棋手每擲一次硬幣,棋子向前跳動一次,若硬幣出現(xiàn)正面則棋子向前跳動一站,出現(xiàn)反面則向前跳動兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r,游戲結(jié)束.已知硬幣出現(xiàn)正反面的概率都為
(1)求P1,P2,P3,并根據(jù)棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列,并求出{an}的通項公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

設(shè)事件A發(fā)生的概率為P,若在A發(fā)生的條件下B發(fā)生的概率為P′,則由A產(chǎn)生B的概率為PP′,根據(jù)這一規(guī)律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設(shè)棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動一次,若硬幣出現(xiàn)正面則棋子向前跳動一站,出現(xiàn)反面則向前跳動兩站,直到棋子跳到第99站(獲勝)或100站(失敗)時,游戲結(jié)束.已知硬幣出現(xiàn)正反面的概率都為
12

(1)求P1,P2,P3,并根據(jù)棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列,并求出{an}的通項公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

設(shè)事件A發(fā)生的概率為P,若在A發(fā)生的條件下B發(fā)生的概率為P′,則由A產(chǎn)生B的概率為PP′,根據(jù)這一規(guī)律解答下題:一種擲硬幣走跳棋的游戲:棋盤上有第0,1,2,3,…,100,共101站,設(shè)棋子跳到第n站的概率為Pn,一枚棋子開始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動一次,若硬幣出現(xiàn)正面則棋子向前跳動一站,出現(xiàn)反面則向前跳動兩站,直到棋子跳到第99站(獲勝)或100站(失。⿻r,游戲結(jié)束.已知硬幣出現(xiàn)正反面的概率都為
1
2

(1)求P1,P2,P3,并根據(jù)棋子跳到第n+1站的情況,試用Pn,Pn-1表示Pn+1;
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列,并求出{an}的通項公式;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>


同步練習冊答案