當(dāng)且僅當(dāng).即t=1時(shí).“= 成立. 8分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)

(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍。

(2)若函數(shù),若在[1,e]上至少存在一個(gè)x的值使成立,求實(shí)數(shù)的取值范圍。

【解析】第一問(wèn)中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿足恒成立,得到結(jié)論第二問(wèn)中,在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來(lái)解答即可。

解:(1),

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),

所以 內(nèi)滿足恒成立,即恒成立,

亦即,

即可  又

當(dāng)且僅當(dāng),即x=1時(shí)取等號(hào),

在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是.

(2)在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,設(shè)

 上的增函數(shù),依題意需

實(shí)數(shù)k的取值范圍是

 

查看答案和解析>>

(2012•黃浦區(qū)二模)已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),且對(duì)x∈R,恒有f(1+x)=f(1-x).又當(dāng)x∈[0,1]時(shí),f(x)=x.
(1)當(dāng)x∈[-1,0]時(shí),求f(x)的解析式;
(2)求證:函數(shù)y=f(x)(x∈R)是以T=2為周期的周期函數(shù);
(3)解答本小題考生只需從下列三個(gè)問(wèn)題中選擇一個(gè)寫出結(jié)論即可(無(wú)需寫解題步驟).注意:考生若選擇多于一個(gè)問(wèn)題解答,則按分?jǐn)?shù)最低一個(gè)問(wèn)題的解答正確與否給分.
①當(dāng)x∈[2n-1,2n](n∈Z)時(shí),求f(x)的解析式.
②當(dāng)x∈[2n-1,2n+1](其中n是給定的正整數(shù))時(shí),若函數(shù)y=f(x)的圖象與函數(shù)y=kx的圖象有且僅有兩個(gè)公共點(diǎn),求實(shí)數(shù)k的取值范圍.
③當(dāng)x∈[0,2n](n是給定的正整數(shù)且n≥3)時(shí),求f(x)的解析式.

查看答案和解析>>

精英家教網(wǎng)在四棱錐O-ABCD中,OA⊥平面ABCD,底面ABCD為矩形,AB=OA=tBC(t>0).
(I)當(dāng)t=1時(shí),求證:BD⊥DC;
(II)若BC邊有且僅有一個(gè)點(diǎn)E,使得OE⊥ED,求此時(shí)二面角A-CD-E的正切值.

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)和Sn=5n+t(t是實(shí)數(shù)),下列結(jié)論正確的是( 。

查看答案和解析>>

設(shè)函數(shù)f(x)=-cos2x-4t•sin
x
2
cos
x
2
+2t2-6t+2
(x∈R),其中t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達(dá)式;
(2)當(dāng)-1≤t≤1時(shí),要使關(guān)于t的方程g(t)=kt有且僅有一個(gè)實(shí)根,求實(shí)數(shù)k的取值范圍

查看答案和解析>>


同步練習(xí)冊(cè)答案