題目列表(包括答案和解析)
2 |
2 |
2 |
a |
sinA |
b |
sinB |
asinB |
b |
xsin45° |
2 |
| ||
4 |
| ||
4 |
已知,函數(shù)
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)(1,)的切線方程;
(2)求函數(shù)在[-1,1]的極值;
(3)若在上至少存在一個(gè)實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。
【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時(shí), 又 所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令 有
對(duì)a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。
解:(Ⅰ)∵ ∴
∴ 當(dāng)時(shí), 又
∴ 函數(shù)在點(diǎn)(1,)的切線方程為 --------4分
(Ⅱ)令 有
① 當(dāng)即時(shí)
(-1,0) |
0 |
(0,) |
(,1) |
||
+ |
0 |
- |
0 |
+ |
|
極大值 |
極小值 |
故的極大值是,極小值是
② 當(dāng)即時(shí),在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無(wú)極小值。
綜上所述 時(shí),極大值為,無(wú)極小值
時(shí) 極大值是,極小值是 ----------8分
(Ⅲ)設(shè),
對(duì)求導(dǎo),得
∵,
∴ 在區(qū)間上為增函數(shù),則
依題意,只需,即
解得 或(舍去)
則正實(shí)數(shù)的取值范圍是(,)
某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻(時(shí)) 的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且.
(1)令, ,寫出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;
(2)若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作,求;
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?
【解析】第一問(wèn)利用定義法求證單調(diào)性,并判定結(jié)論。
第二問(wèn)(2)由函數(shù)的單調(diào)性知,
∴,即t的取值范圍是.
當(dāng)時(shí),記
則
∵在上單調(diào)遞減,在上單調(diào)遞增,
第三問(wèn)因?yàn)楫?dāng)且僅當(dāng)時(shí),.
故當(dāng)時(shí)不超標(biāo),當(dāng)時(shí)超標(biāo).
已知曲線C:(m∈R)
(1) 若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;
(2) 設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線。
【解析】(1)曲線C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是
(2)當(dāng)m=4時(shí),曲線C的方程為,點(diǎn)A,B的坐標(biāo)分別為,
由,得
因?yàn)橹本與曲線C交于不同的兩點(diǎn),所以
即
設(shè)點(diǎn)M,N的坐標(biāo)分別為,則
直線BM的方程為,點(diǎn)G的坐標(biāo)為
因?yàn)橹本AN和直線AG的斜率分別為
所以
即,故A,G,N三點(diǎn)共線。
2 |
2 |
2 |
a |
sinA |
b |
sinB |
asinB |
b |
xsin45° |
2 |
| ||
4 |
| ||
4 |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com