作圖題可先用2B鉛筆作答.確認(rèn)后.再用書寫黑色字跡的0.5毫米的簽字筆描寫清楚. 查看更多

 

題目列表(包括答案和解析)

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知矩陣M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩陣M的特征值λ1、λ2和特征向量
ξ
1
ξ2
;
(II)求M6
ξ
的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為
x=2cosα
y=sinα
(α為參數(shù))
.以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ-
π
4
)=2
2

(Ⅰ)求直線l的直角坐標(biāo)方程;
(Ⅱ)點P為曲線C上的動點,求點P到直線l距離的最大值.
(3)選修4-5:不等式選講
(Ⅰ)已知:a、b、c∈R+,求證:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某長方體從一個頂點出發(fā)的三條棱長之和等于3,求其對角線長的最小值.

查看答案和解析>>

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直接坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,
π
2
),判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大小.

查看答案和解析>>

本題有(Ⅰ)、(Ⅱ)、(Ⅲ)三個選答題,每題7分,請考生任選兩題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(Ⅰ)直線l1:x=-4先經(jīng)過矩陣A=
4m
n-4
作用,再經(jīng)過矩陣B=
11
0-1
作用,變?yōu)橹本l2:2x-y=4,求矩陣A.
(Ⅱ)已知直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù))和圓C的極坐標(biāo)方程:p=2
2
sin(θ+
π
4
).判斷直線l和圓C的位置關(guān)系.
(Ⅲ)解不等式:|x|+2|x-1|≤4.

查看答案和解析>>

本題有(I)、(II)、(III)三個選作題,每題7分,請考生任選兩題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知a∈R,矩陣P=
02
-10
,Q=
01
a0
,若矩陣PQ對應(yīng)的變換把直線l1:x-y+4=0變?yōu)橹本l2:x+y+4=0,求實數(shù)a的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,求圓C:ρ=2上的點P到直線l:ρ(cosθ+
3
sinθ)=6
的距離的最小值.
(3)選修4-5:不等式選講
已知實數(shù)x,y滿足x2+4y2=a(a>0),且x+y的最大值為5,求實數(shù)a的值.

查看答案和解析>>

精英家教網(wǎng)本題有(1),(2),(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑.
(1)選修4-2:矩陣與變換
如圖所示:△OAB在伸縮變換M作用下變?yōu)椤鱋A1B1
(i)求矩陣M的特征值及相應(yīng)的特征向量;
(ii)求逆矩陣M-1以及(M-120
(2)選修4-4:坐標(biāo)系與參數(shù)方程.
已知曲線C1的參數(shù)方程為
x=2sinθ
y=cosθ
(θ為參數(shù)),曲線C2的參數(shù)方程為
x=2t
y=t+1
(t為參數(shù))
(i)若將曲線C1與C2上各點的橫坐標(biāo)都縮短為原來的一半,分別得到曲線C1和C2,求出曲線C1和C2的普通方程;
(ii)以坐標(biāo)原點為極點,x軸的非負半軸為極軸建立極坐標(biāo)系,求過極點且與C2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求證:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求實數(shù)m的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案