設(shè)函數(shù). 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是兩兩不等的常數(shù)),則
a
f′(a)
+
b
f′(b)
+
c
f′(c)
=
 

查看答案和解析>>

設(shè)函數(shù)f(x)=cos(2x+
π
3
)+sin2x.
(1)求函數(shù)f(x)的最大值和最小正周期.
(2)設(shè)A,B,C為△ABC的三個內(nèi)角,若cosB=
1
3
,f(
C
3
)=-
1
4
,且C為非鈍角,求sinA.

查看答案和解析>>

設(shè)函數(shù)f(x)=
ax2+bx+c
(a<0)
的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個正方形區(qū)域,則a的值為(  )
A、-2B、-4
C、-8D、不能確定

查看答案和解析>>

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線x=
π
8

(1)求φ;
(2)若函數(shù)y=2f(x)+a,(a為常數(shù)a∈R)在x∈[
11π
24
4
]
上的最大值和最小值之和為1,求a的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=
x-3,x≥10
f(x+5),x<10
,則f(5)=
 

查看答案和解析>>

ABAACBBCDB

    155  

         0

17、解:(Ⅰ)

         

(Ⅱ)

     

18、解: (I) 由于在閉區(qū)間[0,7]上,只有,故.若是奇函數(shù),則,矛盾.所以,不是奇函數(shù).

, 從而知函數(shù)是以為周期的函數(shù).

是偶函數(shù),則.又,從而

由于對任意的(3,7]上,,又函數(shù)的圖象的關(guān)于對稱,所以對區(qū)間[7,11)上的任意均有.所以,,這與前面的結(jié)論矛盾.

所以,函數(shù)是非奇非偶函數(shù).

 (II) 由第(I)小題的解答,我們知道在區(qū)間(0,10)有且只有兩個解,并且.由于函數(shù)是以為周期的函數(shù),故.所以在區(qū)間[-2000,2000]上,方程共有個解.

在區(qū)間[2000,2010]上,方程有且只有兩個解.因?yàn)?/p>

所以,在區(qū)間[2000,2005]上,方程有且只有兩個解.

在區(qū)間[-2010,-2000]上,方程有且只有兩個解.因?yàn)?/p>

,

所以,在區(qū)間[-2005,-2000]上,方程無解.

  綜上所述,方程在[-2005,2005]上共有802個解.

19、[解](1)

 

 

 

 

 

 

 

 

 

 

            

      (2)方程的解分別是,由于上單調(diào)遞減,在上單調(diào)遞增,因此

.                        

    由于.                         

  (3)[解法一] 當(dāng)時,.

          

              

               ,                              . 又,

       ①  當(dāng),即時,取,

       .

       ,

       則.                                                

       ②  當(dāng),即時,取,    .

    由 ①、②可知,當(dāng)時,,.

因此,在區(qū)間上,的圖像位于函數(shù)圖像的上方. 

    [解法二] 當(dāng)時,.

    令 ,解得 ,               

在區(qū)間上,當(dāng)時,的圖像與函數(shù)的圖像只交于一點(diǎn); 當(dāng)時,的圖像與函數(shù)的圖像沒有交點(diǎn).    

如圖可知,由于直線過點(diǎn),當(dāng)時,直線是由直線繞點(diǎn)逆時針方向旋轉(zhuǎn)得到. 因此,在區(qū)間上,的圖像位于函數(shù)圖像的上方.

20、解:(Ⅰ)設(shè)函數(shù)的圖象上任意一點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,則

∵點(diǎn)在函數(shù)的圖象上

(Ⅱ)由

當(dāng)時,,此時不等式無解

當(dāng)時,,解得

因此,原不等式的解集為

(Ⅲ)

?)

?)

21、解:(I)∵

∴要使有意義,必須,即

,且……①    ∴的取值范圍是

由①得:,∴,

(II)由題意知即為函數(shù),的最大值,

∵直線是拋物線的對稱軸,∴可分以下幾種情況進(jìn)行討論:

(1)當(dāng)時,函數(shù)的圖象是開口向上的拋物線的一段,

上單調(diào)遞增,故;

(2)當(dāng)時,,,有=2;

(3)當(dāng)時,,函數(shù),的圖象是開口向下的拋物線的一段,

時,,

時,,

時,

綜上所述,有=。

(III)當(dāng)時,

      當(dāng)時,,∴,

,故當(dāng)時,;

當(dāng)時,,由知:,故;

當(dāng)時,,故,從而有

要使,必須有,,即,

此時,。

綜上所述,滿足的所有實(shí)數(shù)a為:。

                                     

 


同步練習(xí)冊答案