C. f<f(3.5) D. f<f(1.5)第Ⅱ卷 選擇題 查看更多

 

題目列表(包括答案和解析)

設f(x)是定義在R上以6為周期的函數,f(x)在(0,3)內單調遞減,且y=f(x)的圖象關于直線x=3對稱,則下面正確的結論是
[     ]
A.f(1.5)<f(3.5)<f(6.5)
B.f(3.5)<f(1.5)<f(6.5)
C.f(6.5)<f(3.5)<f(1.5)
D.f(3.5)<f(6.5)<f(1.5)

查看答案和解析>>

(2012•成都模擬)定義域為R的函數f(x)在(6,+∞)為減函數且函數y=f(x+6)為偶函數,則(  )

查看答案和解析>>

已知定義在R上的函數y=f(x)滿足下列三個條件:
①對任意的x∈R都有f(x+4)=f(x);
②對于任意的0≤x1<x2≤2,都有f(x1)<f(x2);
③y=f(x+2)的圖象關于y軸對稱.
則下列結論中,正確的是( 。

查看答案和解析>>

設f(x)為周期是2的奇函數,當時,f(x)=x(x+1),則當時,f(x)的表達式為

A.(x-5)(x-4)        B.(x-6)(x-5)          C.(x-6)(5-x)          D.(x-6)(7-x)

 

查看答案和解析>>

設f(x)是定義在R上以6為周期的函數,f(x)在(0,3)內單調遞減,且y=f(x)的圖象關于直線x=3對稱,則下面正確的結論是


  1. A.
    f(1.5)<f(3.5)<f(6.5)
  2. B.
    f(3.5)<f(1.5)<f(6.5)
  3. C.
    f(6.5)<f(3.5)<f(1.5)
  4. D.
    f(3.5)<f(6.5)<f(1.5)

查看答案和解析>>

ABCACDCCDB

 2           

        (2,1)È(1,2)     -2

17、解:(Ⅰ)

         

(Ⅱ)

     

18、[解](1)

 

 

 

 

 

 

 

 

 

 

            

      (2)方程的解分別是,由于上單調遞減,在上單調遞增,因此

.                        

    由于.                         

  19、解:(Ⅰ)

由方程    ②

因為方程②有兩個相等的根,所以,

即 

由于代入①得的解析式

   (Ⅱ)由

解得

故當的最大值為正數時,實數a的取值范圍是

 

20、解:(Ⅰ)設函數的圖象上任意一點關于原點的對稱點為,則

∵點在函數的圖象上

(Ⅱ)由

時,,此時不等式無解

時,,解得

因此,原不等式的解集為

21、解: (Ⅰ)由原式得

           ∴

(Ⅱ)由,此時有.

或x=-1 , 又

    所以f(x)在[--2,2]上的最大值為最小值為

   (Ⅲ)解法一: 的圖象為開口向上且過點(0,--4)的拋物線,由條件得

   

     即  ∴--2≤a≤2.

     所以a的取值范圍為[--2,2].

  解法二:令 由求根公式得:

    所以上非負.

   由題意可知,當x≤-2或x≥2時, ≥0,

  從而x1≥-2,  x2≤2,

   即 解不等式組得: --2≤a≤2.

∴a的取值范圍是[--2,2].

 

 


同步練習冊答案