又由于∴直線AB的方程為 查看更多

 

題目列表(包括答案和解析)

設(shè)雙曲線C的中心在原點,焦點在x軸上,離心率為2,其一個頂點的坐標是(
1
3
,0)
;又直線l:y=kx+1與雙曲線C相交于不同的A、B兩點.
(Ⅰ)求雙曲線C的標準方程;
(Ⅱ)是否存在實數(shù)k,使得以線段AB為直徑的圓過坐標的原點?若存在,求出k的值;若不存在,寫出理由.

查看答案和解析>>

如圖,在平面直角坐標系xOy中.橢圓的右焦點為F,右準線為l.
(1)求到點F和直線l的距離相等的點G的軌跡方程.
(2)過點F作直線交橢圓C于點A,B,又直線OA交l于點T,若,求線段AB的長;
(3)已知點M的坐標為(x,y),x≠0,直線OM交直線于點N,且和橢圓C的一個交點為點P,是否存在實數(shù)λ,使得,若存在,求出實數(shù)λ;若不存在,請說明理由.

查看答案和解析>>

如圖,在平面直角坐標系xOy中.橢圓C:
x2
2
+y2=1
的右焦點為F,右準線為l.
(1)求到點F和直線l的距離相等的點G的軌跡方程.
(2)過點F作直線交橢圓C于點A,B,又直線OA交l于點T,若
OT
=2
OA
,求線段AB的長;
(3)已知點M的坐標為(x0,y0),x0≠0,直線OM交直線
x0x
2
+y0y=1
于點N,且和橢圓C的一個交點為點P,是否存在實數(shù)λ,使得
OP
2
OM
ON
?
,若存在,求出實數(shù)λ;若不存在,請說明理由.

查看答案和解析>>

已知橢圓的中心在原點,焦點在x軸上,從橢圓上的點P向x軸作垂線,恰好通過橢圓的左焦點,點A、B分別是橢圓的右頂點和上頂點,且A
B
=λO
P
,又直線AB與圓x2+y2=
2
3
相切,
(1)求滿足上述條件的橢圓方程;
(2)過該橢圓的右焦點F2的動直線l與橢圓相交于不同的兩點M、N,在x上是否存在定點Q,使得Q
M
•Q
N
為定值?如果存在,求出定點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調(diào)遞減;當單調(diào)遞增,故當時,取最小值

于是對一切恒成立,當且僅當.       、

時,單調(diào)遞增;當時,單調(diào)遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調(diào)遞減;當時,單調(diào)遞增.故當,

從而,

所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學方法.第一問利用導函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

 

查看答案和解析>>


同步練習冊答案