解: (1)解 由已知得. -------------------------------4分 可 知 則 .--------6分兩式相減得+-+ -----8分. -------------10分 可知?jiǎng)t = -------------13分 查看更多

 

題目列表(包括答案和解析)

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒(méi)有零點(diǎn),所以方程無(wú)根,則函數(shù)y=x+|x-c|與y=2沒(méi)有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>

已知,(其中

⑴求;

⑵試比較的大小,并說(shuō)明理由.

【解析】第一問(wèn)中取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得

,則得到結(jié)論

第二問(wèn)中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),;

猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。

解:⑴取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得,

,則。       …………4分

⑵要比較的大小,即比較:的大小,

當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí),;                              …………6分

猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:

由上述過(guò)程可知,時(shí)結(jié)論成立,

假設(shè)當(dāng)時(shí)結(jié)論成立,即,

當(dāng)時(shí),

時(shí)結(jié)論也成立,

∴當(dāng)時(shí),成立。                          …………11分

綜上得,當(dāng)時(shí),;

當(dāng)時(shí),

當(dāng)時(shí), 

 

查看答案和解析>>

(本小題滿分12分)

為了解某班學(xué)生喜歡打籃球是否與性別有關(guān),對(duì)該班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

 

喜歡打籃球

不喜歡打籃球

合 計(jì)

男 生

 

5

 

女 生

10

 

 

合 計(jì)

 

 

50

已知在全部50人中隨機(jī)抽取1人抽到喜歡打籃球的學(xué)生的概率為0.6。

(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(Ⅱ)是否有99%的把握認(rèn)為喜歡打籃球與性別有關(guān)?說(shuō)明你的理由;

(Ⅲ)已知不喜歡打籃球的5位男生中,喜歡踢足球,喜歡打羽毛球,喜歡打乒乓球,現(xiàn)在從這5位男生中選取3位進(jìn)行其他方面的調(diào)查,求不全被選中的概率。

附:1.

2.在統(tǒng)計(jì)中,用以下結(jié)果對(duì)變量的獨(dú)立性進(jìn)行判斷:

(1)當(dāng)時(shí),沒(méi)有充分的證據(jù)判定變量有關(guān)聯(lián),可以認(rèn)為變量是沒(méi)有關(guān)聯(lián)的;

(2)當(dāng)時(shí),有90%的把握判定變量有關(guān)聯(lián);

(3)當(dāng)時(shí),有95%的把握判定變量有關(guān)聯(lián);

(4)當(dāng)時(shí),有99%的把握判定變量有關(guān)聯(lián)。

 

 

 

 

 

查看答案和解析>>

(本小題滿分12分)

為了解某班學(xué)生喜歡打籃球是否與性別有關(guān),對(duì)該班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:

 

喜歡打籃球

不喜歡打籃球

合 計(jì)

男 生

 

5

 

女 生

10

 

 

合 計(jì)

 

 

50

已知在全部50人中隨機(jī)抽取1人抽到喜歡打籃球的學(xué)生的概率為0.6。

(Ⅰ)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(Ⅱ)是否有99%的把握認(rèn)為喜歡打籃球與性別有關(guān)?說(shuō)明你的理由;

(Ⅲ)已知不喜歡打籃球的5位男生中,喜歡踢足球,喜歡打羽毛球,喜歡打乒乓球,現(xiàn)在從這5位男生中選取3位進(jìn)行其他方面的調(diào)查,求不全被選中的概率。

附:1.

2.在統(tǒng)計(jì)中,用以下結(jié)果對(duì)變量的獨(dú)立性進(jìn)行判斷:

(1)當(dāng)時(shí),沒(méi)有充分的證據(jù)判定變量有關(guān)聯(lián),可以認(rèn)為變量是沒(méi)有關(guān)聯(lián)的;

(2)當(dāng)時(shí),有90%的把握判定變量有關(guān)聯(lián);

(3)當(dāng)時(shí),有95%的把握判定變量有關(guān)聯(lián);

(4)當(dāng)時(shí),有99%的把握判定變量有關(guān)聯(lián)。

 

 

 

 

 

查看答案和解析>>


同步練習(xí)冊(cè)答案