據此證明:. 查看更多

 

題目列表(包括答案和解析)

根據定義討論(或證明)函數增減性的一般步驟是:

(1)設x1、x2是給定區(qū)間內的任意兩個值且x1<x2;

(2)作差f(x1)-f(x2),并將此差化簡、變形;

(3)判斷f(x1)-f(x2)的正負,從而證得函數的增減性.

利用函數的單調性可以把函數值的大小比較的問題轉化為自變量的大小比較的問題.

函數的單調性只能在函數的定義域內來討論.這即是說,函數的單調區(qū)間是其定義域的________.

查看答案和解析>>

諾貝爾獎發(fā)放方式為:每年一發(fā),把獎金總額平均分成6份,獎勵在6項(物理、化學、文學、經濟學、生理學和醫(yī)學、和平)為人類作出最有益貢獻的人,每年發(fā)放獎金的總金額是基金在該年度所獲利息的一半,另一半利息用于基金總額,以便保證獎金數逐年增加.假設基金平均年利率為r=6.24%.資料顯示:2002年諾貝爾獎發(fā)放后基金總額約為19800萬美元.設f(x)表示為第x(x∈N*)年諾貝爾獎發(fā)放后的基金總額(2002年記為f(1),2003年記為f(2),…,依此類推)
(1)用f(1)表示f(2)與f(3),并根據所求結果歸納出函數f(x)的表達式;
(2)試根據f(x)的表達式判斷網上一則新聞“2012年度諾貝爾獎各項獎金高達150萬美元”是否為真,并說明理由.
(參考數據:1.062410=1.83,1.031210=1.36)

查看答案和解析>>

諾貝爾獎發(fā)放方式為:每年一閃,把獎金總額平均分成6份,獎勵在6項(物理、化學、文學、經濟學、生理學和醫(yī)學、和平)為人類作出最有益貢獻的人,每年發(fā)放獎金的總金額是基金在該年度所獲利息的一半,另一半利息用于基金總額,以便保證獎金數逐年增加.假設基金平均年利率為r=6.24%.資料顯示:1999年諾貝爾獎發(fā)放后基金總額約為19800萬美元.設f(x)表示為第x(x∈N*)年諾貝爾獎發(fā)放后的基金總額(1999年記為f(1),2000年記為f(2),…,依此類推)
(1)用f(1)表示f(2)與f(3),并根據所求結果歸納出函數f(x)的表達式;
(2)試根據f(x)的表達式判斷網上一則新聞“2009年度諾貝爾獎各項獎金高達150萬美元”是否為真,并說明理由.
(參考數據:1.062410=1.83,1.031210=1.36)

查看答案和解析>>

諾貝爾獎發(fā)放方式為:每年一閃,把獎金總額平均分成6份,獎勵在6項(物理、化學、文學、經濟學、生理學和醫(yī)學、和平)為人類作出最有益貢獻的人,每年發(fā)放獎金的總金額是基金在該年度所獲利息的一半,另一半利息用于基金總額,以便保證獎金數逐年增加.假設基金平均年利率為r=6.24%.資料顯示:1999年諾貝爾獎發(fā)放后基金總額約為19800萬美元.設f(x)表示為第x(x∈N*)年諾貝爾獎發(fā)放后的基金總額(1999年記為f(1),2000年記為f(2),…,依此類推)
(1)用f(1)表示f(2)與f(3),并根據所求結果歸納出函數f(x)的表達式;
(2)試根據f(x)的表達式判斷網上一則新聞“2009年度諾貝爾獎各項獎金高達150萬美元”是否為真,并說明理由.
(參考數據:1.062410=1.83,1.031210=1.36)

查看答案和解析>>

諾貝爾獎發(fā)放方式為:每年一閃,把獎金總額平均分成6份,獎勵在6項(物理、化學、文學、經濟學、生理學和醫(yī)學、和平)為人類作出最有益貢獻的人,每年發(fā)放獎金的總金額是基金在該年度所獲利息的一半,另一半利息用于基金總額,以便保證獎金數逐年增加.假設基金平均年利率為r=6.24%.資料顯示:1999年諾貝爾獎發(fā)放后基金總額約為19800萬美元.設f(x)表示為第x(x∈N*)年諾貝爾獎發(fā)放后的基金總額(1999年記為f(1),2000年記為f(2),…,依此類推)
(1)用f(1)表示f(2)與f(3),并根據所求結果歸納出函數f(x)的表達式;
(2)試根據f(x)的表達式判斷網上一則新聞“2009年度諾貝爾獎各項獎金高達150萬美元”是否為真,并說明理由.
(參考數據:1.062410=1.83,1.031210=1.36)

查看答案和解析>>

 

一 、選擇題

1.C.  2.A.  3.A.  4.A.  5.A. 6.C.  7.A.  8.A.  9.C.  10.D.  11.C.12.D.

一、                                                              填空題

13.. 14.2. 15.16.  16.13.

三、解答題

17.(理科) (1)由(1+tanA)(1+tanB)=2,得

tanA+tanB=1-tanAtanB,

即tan(A+B)=1.              

∵A、B為△ABC內角, ∴A+B=.  則 C=(定值).

(2)已知△ABC內接于單位圓, ∴△ABC外接圓半徑R=1.

∴由正弦定理得:,.

則△ABC面積S=

                  =

                  =

∵  0<B<, ∴.

    故 當時,△ABC面積S的最大值為.   

(文科)。1),

,,,∴

∴ 向量的夾角的大小為

(2)

為鄰邊的平行四邊形的面積,

據此猜想,的幾何意義是以為鄰邊的平行四邊形的面積.

18. (1)學生甲恰好抽到3道歷史題,2道地理題的概率為

       (2)若學生甲被評為良好,則他應答對5道題或4道題

       而答對4道題包括兩種情況:①答對3道歷史題和1道地理(錯一道地理題);②答對2道歷史題和2道地理題(錯一道歷史題)。

       設答對5道記作事件A;

       答對3道歷史題,1道地理題記作事件B;

       答對2道歷史題,2道地理題,記作事件C;

       ,

          ,

         

       ∴甲被評為良好的概率為:

      

19.  (1)延長AC到G,使CG=AC,連結BG、DG,E是AB中點,

    故直線BG和BD所成的銳角(或直角)就是CE和BD所成的角.

   

   (2)設C到平面ABD的距離為h

   

   

20. (1)

(2) 由(1)知:,故是增函數

對于一切恒成立.

由定理知:存在

由(1)知:

  

的一般性知:

21. (1)以中點為原點,所在直線為軸,建立平面直角坐標系,則

 

 

 

 

 

 

 

 

 

,由,此即點的軌跡方程.

   (2)將向右平移一個單位,再向下平移一個單位后,得到圓,

依題意有

   (3)不妨設點的上方,并設,則,

所以,由于

22.(理科)⑴ ∵f(x)+g(x)=ax,∴f(-x)+ g(-x)=a-x

∵f(x)是奇函數,g(x)是偶函數,∴-f(x)+g(x)=a-x

∴f(x)=,g(x)=

是R上的減函數,

∴y=f -1(x)也是R上的減函數. 

 

 n>2,上是增函數.是減函數;

上是減函數.是增函數.

(文科)。1)∵函數時取得極值,∴-1,3是方程的兩根,

(2),當x變化時,有下表

x

(-∞,-1)

-1

(-1,3)

3

(3,+∞)

f(x)

+

0

-

0

+

f(x)

Max

c+5

Min

c-27

時f(x)的最大值為c+54.

要使f(x)<2|c|恒成立,只要c+54<2|c|即可.

當c≥0時c+54<2c,  ∴c>54.

當c<0時c+54<-2c,∴c<-18.

∴c∈(-∞,-18)∪(54,+∞)


同步練習冊答案