題目列表(包括答案和解析)
某校有教職員工150人,為了豐富教職工的課余生活,每天定時開放健身房和娛樂室.據(jù)調(diào)查統(tǒng)計,每次去健身房的人有10%下次去娛樂室,而在娛樂室的人有20%下次去健身房,請問,隨著時間的推移,去健身房的人數(shù)能否趨于穩(wěn)定?(假設(shè)這150人都會去參加活動)
(08年長郡中學(xué)一模理)(13分)某中學(xué)有教職員工500人,為了開展迎2008奧運(yùn)全民健身活動,增強(qiáng)教職員工體質(zhì),學(xué)校工會鼓勵大家積極參加晨練與晚練,每天清晨與晚上定時開放運(yùn)動場、健身房和乒乓球室,約有30%的教職員工堅持每天鍛煉. 據(jù)調(diào)查統(tǒng)計,每次去戶外鍛煉的人有10%下次去室內(nèi)鍛煉,而在室內(nèi)鍛煉的人有20%下次去戶外鍛煉. 請問,隨著時間的推移,去戶外鍛煉的人數(shù)能否趨于穩(wěn)定?穩(wěn)定在多少人左右?
某校有教職員工150人,為了豐富教工的課余生活,每天定時開放健身房和娛樂室.據(jù)調(diào)查統(tǒng)計,每次去健身房的人有10%下次去娛樂室,而在娛樂室的人有20%下次去健身房.請問,隨著時間的推移,去健身房的人數(shù)能否趨于穩(wěn)定?
某校有教職員工150人,為了豐富教工的課余生活,每天定時開放健身房和娛樂室。據(jù)調(diào)查統(tǒng)計,每次去健身房的人有10%下次去娛樂室,而在娛樂室的人有20%下次去健身房.請問,隨著時間的推移,去健身房的人數(shù)能否趨于穩(wěn)定?
一、選擇題1B 2C 3D 4B 5A 6C 7D 8A 9A 10B 11B 12 A
二、填空題13、 14、4 ;15、16、或
三、解答題
17.(10分)
解:(I)
當(dāng),即時, 取得最大值.
函數(shù)的取得最大值的自變量的集合為…………5分
(II)由題意得:
即 又由因此函數(shù)的單調(diào)減區(qū)間為.……10分
18.(12分)解:(I) ………………4分
(II)ξ可取1,2,3,4.
,
; …………8分
故ξ的分布列為
ξ
1
2
3
4
P
……………………………………………………………10分
………………………12分
19.解:(Ⅰ)取BC中點(diǎn)F,連結(jié)AF,則CF=AD,且CF∥AD,
∴四邊形ADCF是平行四邊形,∴AF∥CD,
∴∠PAF(或其補(bǔ)角)為異面直線PA與CD所成的角 ……………………… 2分
∵PB⊥平面ABCD,∴PB⊥BA,PB⊥BF.
∵PB=AB=BF=1,∴AB⊥BC,∴PA=PF=AF=.
∴△PAF是正三角形,∠PAF=60°
即異面直線PA與CD所成的角等于60°.………4分
(Ⅱ)在Rt△PBD中,PB=1,BD=,∴PD=
∵DE=2PE,∴PE=
則,∴△PBE∽△PDB,∴BE⊥PD. …………………… 5分
由(Ⅰ)知,CF=BF=DF,∴∠CDB=90°.
∴CD⊥BD.又PB⊥平面PBD,∴PB⊥CD.
∴CD⊥平面PBD,∴CD⊥BE …………………………7分
∴BE⊥平面PCD. ………………………………………8分
(Ⅲ)連結(jié)AF,交BD于點(diǎn)O,則AO⊥BD.
∵PB⊥平面ABCD,∴平面PBD⊥平面ABD,∴AO⊥平面PBD.
過點(diǎn)O作OH⊥PD于點(diǎn)H,連結(jié)AH,則AH⊥PD.
∴∠AHO為二面角A-PD-B的平面角. ………………………………… 10分
在Rt△ABD中,AO=.
在Rt△PAD中,AH=.
在Rt△AOH中,sin∠AHO=.∴∠AHO=60°.
即二面角A-PD-B的大小為60°………………………………………12分
20.(12分)
解:……2分
令=0,得
(1)當(dāng)
即<0或>4時有兩個不同的實(shí)根,,不妨設(shè)<
于是,從而有下表
x
x1
+
0
-
0
+
↑
為極大值
↓
為極小值
↑
即此時有兩個極值點(diǎn). ………6分
(2)當(dāng)△=0即=0或=4時,方程有兩個相同的實(shí)根于是……… 8分
故當(dāng)<時>0,當(dāng)>時>0,因此無極值………10分
(3)當(dāng)△<0即0<<4時
,故為增函數(shù),此時無極值.
綜上,當(dāng)無極值點(diǎn)
……… 12分
21.解:(Ⅰ)設(shè): ,,則,因為,所以的最小值為,,又,,故雙曲線的方程為. -----------------4分
(Ⅱ)由可知,相應(yīng)準(zhǔn)線為,設(shè)過的直線為,
代入中,消去可得,????①
由題意知,設(shè),則是方程①的兩個根,由韋達(dá)定理,得,將兩式相除,得
因,故直線的斜率為
???????????8分
所以,直線的方程為,將代入方程中,整理可得,所以直線恒過定點(diǎn). ???????12分
22. 解:(Ⅰ)由得 .當(dāng)時,因為,,構(gòu)成以為頂點(diǎn)的等腰三角形,所以
又因為在函數(shù)的圖像上,所以.()
又點(diǎn)的坐標(biāo)滿足前式,所以,
(Ⅱ)因為,,所以
設(shè),則.①
所以 ②
由①和②得:.
所以
<3…………………8分
(Ⅲ)由已知得對一切均成立.
所以
>1
所以單調(diào)遞增.最小值為.
又因為對一切均成立.所以.……………… 12分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com