18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an

   (Ⅱ)設數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設,證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

 

1.D  2.C  3.C  4.A  5.A  6.D  7.C  8.D  9.A  10.C 

11.              12. 8       13.    14.   15. 2

16.依題意,即,由函數(shù)為奇函數(shù),

∴對于定義域內的任意x有,即

,即,

解得

17.(1)如圖建立空間直角坐標系,設,且

∴SC與AD所成的角為

18.(1)最后甲獲勝的概率為P1,乙獲勝的概率為P2,則,∴甲、乙兩隊各自獲勝的概率分

(2)乙隊第五局必須獲勝,前四局為獨立重復實驗,乙隊3∶2獲勝的概率為P3,則,∴乙隊以3∶2獲勝的概率為

19.(1)聯(lián)立兩個方程,從中消去y得

注意到a>b>c, a+b+c=0,∴a>0, c<0, ∴△>0, 故兩條曲線必交于兩個不同的交點A、B;

(2)設的兩個根為x1、x2,則AB在x軸上的射影的長

,由此可得

20.(1)設{an}的公差為d,則65=10a1+45d,由a1=2,得d=1,

(2)設函數(shù)

故當x=e時,且當0<x<e時,當x>e時,

∴函數(shù)在區(qū)間(0,e)內單調遞增,而在區(qū)間上單調遞減,由及函數(shù)單調遞增可知函數(shù)與f(x)有相同的單調性,即在區(qū)間(0,e)內單調遞增,而在區(qū)間上單調遞減,

注意到,由2<e<3知數(shù)列{bn}的最大項是第2項,這一項是;

(3)在數(shù)列{cn}不存在這樣的項使得它們按原順序成等比數(shù)列. 事實上由

. 綜合知即無法找到這樣的一些連續(xù)的項使其成等比數(shù)列.  

21.(1)若直線l與x軸不垂直,設其方程為,l與拋物線的交點坐標分別為、,由,即,

又由.

,則直線l的方程為,

則直線l過定點(2,0).

若直線l與x軸垂直,易得 l的方程為x=2,

則l也過定點(2,0).  綜上,直線l恒過定點(2,0).

(2)由(1)得,可得 解得k的取值范圍是

(3)假定,則有,如圖,即

由(1)得. 由定義得 從而有

均代入(*)得

,即這與相矛盾.

經(jīng)檢驗,當軸時,. 故


同步練習冊答案