解答:,B’(x0,2).M(x,y),則在中可求得.∴ 查看更多

 

題目列表(包括答案和解析)

在直三棱柱ABC—A1B1C1中,AB1⊥BC1,AB=CC1=a,BC=b.

(1)設(shè)E、F分別為AB1、BC1的中點(diǎn),求證:EF∥平面ABC;

(2)求證:A1C1⊥AB;

(3)求點(diǎn)B1到平面ABC1的距離.

查看答案和解析>>

 【必做題】本題滿分10分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.

過(guò)拋物線y2=4x上一點(diǎn)A(1,2)作拋物線的切線,分別交x軸于點(diǎn)B,交y軸于點(diǎn)D,點(diǎn)C(異于點(diǎn)A)在拋物線上,點(diǎn)E在線段AC上,滿足=λ1;點(diǎn)F在線段BC上,滿足=λ2,且λ1+λ2=1,線段CDEF交于點(diǎn)P

(1)設(shè),求;

(2)當(dāng)點(diǎn)C在拋物線上移動(dòng)時(shí),求點(diǎn)P的軌跡方程.

查看答案和解析>>

已知函數(shù);

(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍。

(2)若函數(shù),若在[1,e]上至少存在一個(gè)x的值使成立,求實(shí)數(shù)的取值范圍。

【解析】第一問(wèn)中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿足恒成立,得到結(jié)論第二問(wèn)中,在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來(lái)解答即可。

解:(1),

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),

所以 內(nèi)滿足恒成立,即恒成立,

亦即,

即可  又

當(dāng)且僅當(dāng),即x=1時(shí)取等號(hào),

在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是.

(2)在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,設(shè)

 上的增函數(shù),依題意需

實(shí)數(shù)k的取值范圍是

 

查看答案和解析>>

已知函數(shù)f(x)=lnx+
1
x
-1

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m∈R,對(duì)任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma-(xo)<0成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:ln2l+1n22+…+ln2n>
(n-1)4
4n3
(n≥2,n∈N*)

查看答案和解析>>

設(shè)函數(shù)f(x)=(1+x)2-2ln(1+x).
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[
1e
-1,e-1]
時(shí),(其中e=2.718…)不等式f(x)<m恒成立,
求實(shí)數(shù)m的取值范圍;
(3)試討論關(guān)于x的方程:f(x)=x2+x+a在區(qū)間[0,2]上的根的個(gè)數(shù).

查看答案和解析>>


同步練習(xí)冊(cè)答案