綜上所述a∈ 查看更多

 

題目列表(包括答案和解析)

某地開發(fā)了一個旅游景點(diǎn),第1年的游客約為100萬人,第2年的游客約為120萬人.某數(shù)學(xué)興趣小組綜合各種因素預(yù)測:①該景點(diǎn)每年的游客人數(shù)會逐年增加;②該景點(diǎn)每年的游客都達(dá)不到130萬人.該興趣小組想找一個函數(shù)y=f(x)來擬合該景點(diǎn)對外開放的第x(x≥1)年與當(dāng)年的游客人數(shù)y(單位:萬人)之間的關(guān)系.
(1)根據(jù)上述兩點(diǎn)預(yù)測,請用數(shù)學(xué)語言描述函數(shù)y=f(x)所具有的性質(zhì);
(2)若f(x)=
mx
+n,試確定m,n的值,并考察該函數(shù)是否符合上述兩點(diǎn)預(yù)測;
(3)若f(x)=a•bx+c(b>0,b≠1),欲使得該函數(shù)符合上述兩點(diǎn)預(yù)測,試確定b的取值范圍.

查看答案和解析>>

2006年普通高等學(xué)校招生全國統(tǒng)一考試(北京卷)

理科綜合能力測試試題卷(生物部分)

1.以下不能說明細(xì)胞全能性的實(shí)驗(yàn)是

A.胡蘿卜韌皮部細(xì)胞培育出植株            B.紫色糯性玉米種子培育出植株

C.轉(zhuǎn)入抗蟲基因的棉花細(xì)胞培育出植株      D.番茄與馬鈴薯體細(xì)胞雜交后培育出植株

2.夏季,在晴天、陰天、多云、高溫干旱四種天氣條件下,獼猴桃的凈光合作用強(qiáng)度(實(shí)際光合速率與呼吸速率之差)變化曲線不同,表示晴天的曲線圖是

3.用蔗糖、奶粉和經(jīng)蛋白酶水解后的玉米胚芽液,通過乳酸菌發(fā)酵可生產(chǎn)新型酸奶,下列相關(guān)敘述錯誤的是

A.蔗糖消耗量與乳酸生成量呈正相關(guān)        B.酸奶出現(xiàn)明顯氣泡說明有雜菌污染

C.應(yīng)選擇處于對數(shù)期的乳酸菌接種          D.只有奶粉為乳酸菌發(fā)酵提供氮源

4.用32P標(biāo)記了玉米體細(xì)胞(含20條染色體)的DNA分子雙鏈,再將這些細(xì)胞轉(zhuǎn)入不含32P的培養(yǎng)基中培養(yǎng),在第二次細(xì)胞分裂的中期、后期,一個細(xì)胞中的染色體總條數(shù)和被32P標(biāo)記的染色體條數(shù)分別是

A.中期20和20、后期40和20             B.中期20和10、后期40和20

C.中期20和20、后期40和10             D.中期20和10、后期40和10

29.(12分)為合理利用水域資源,某調(diào)查小組對一個開放性水庫生態(tài)系統(tǒng)進(jìn)行了初步調(diào)查,部分?jǐn)?shù)據(jù)如下表:

(1)浮游藻類屬于該生態(tài)系統(tǒng)成分中的          ,它處于生態(tài)系統(tǒng)營養(yǎng)結(jié)構(gòu)中的          。

(2)浮游藻類數(shù)量少,能從一個方面反映水質(zhì)狀況好。調(diào)查數(shù)據(jù)分析表明:該水體具有一定的       能力。

(3)浮游藻類所需的礦質(zhì)營養(yǎng)可來自細(xì)菌、真菌等生物的          ,生活在水庫淤泥中的細(xì)菌代謝類型主要為          。

(4)該水庫對游人開放一段時間后,檢測發(fā)現(xiàn)水體己被氮、磷污染。為確定污染源是否來自游人,應(yīng)檢測

          處浮游藻類的種類和數(shù)量。

30.(18分)為豐富植物育種的種質(zhì)資源材料,利用鈷60的γ射線輻射植物種子,篩選出不同性狀的突變植株。請回答下列問題:

(1)鈷60的γ輻射用于育種的方法屬于          育種。

(2)從突變材料中選出高產(chǎn)植株,為培育高產(chǎn)、優(yōu)質(zhì)、抗鹽新品種,利用該植株進(jìn)行的部分雜交實(shí)驗(yàn)如下:

①控制高產(chǎn)、優(yōu)質(zhì)性狀的基因位于        對染色體上,在減數(shù)分裂聯(lián)會期        (能、不能)配對。

②抗鹽性狀屬于          遺傳。

(3)從突變植株中還獲得了顯性高蛋白植株(純合子)。為驗(yàn)證該性狀是否由一對基因控制,請參與實(shí)驗(yàn)設(shè)計并完善實(shí)驗(yàn)方案:

①步驟1:選擇                    雜交。

預(yù)期結(jié)果:                                                  。

②步驟2:                                                  。

預(yù)期結(jié)果:                                                  。

③觀察實(shí)驗(yàn)結(jié)果,進(jìn)行統(tǒng)計分析:如果                    相符,可證明該性狀由一對基因控制。

 

31.(18分)為研究長跑中運(yùn)動員體內(nèi)的物質(zhì)代謝及其調(diào)節(jié),科學(xué)家選擇年齡、體重相同,身體健康的8名男性運(yùn)動員,利用等熱量的A、B兩類食物做了兩次實(shí)驗(yàn)。

實(shí)驗(yàn)還測定了糖和脂肪的消耗情況(圖2)。

請據(jù)圖分析回答問題:

(1)圖1顯示,吃B食物后,          濃度升高,引起          濃度升高。

(2)圖1顯示,長跑中,A、B兩組胰島素濃度差異逐漸          ,而血糖濃度差異卻逐漸          ,A組血糖濃度相對較高,分析可能是腎上腺素和          也參與了對血糖的調(diào)節(jié),且作用相對明顯,這兩種激素之間具有          作用。

(3)長跑中消耗的能量主要來自糖和脂肪。研究表明腎上腺素有促進(jìn)脂肪分解的作用。從能量代謝的角度分析圖2,A組脂肪消耗量比B組          ,由此推測A組糖的消耗量相對          。

(4)通過檢測尿中的尿素量,還可以了解運(yùn)動員在長跑中          代謝的情況。

 

參考答案:

1.B              2.B              3.D             4.A

29.(12分)

    (1)生產(chǎn)者    第一營養(yǎng)級

    (2)自動調(diào)節(jié)(或自凈化)

    (3)分解作用    異養(yǎng)厭氧型

    (4)入水口

30.(18分)

    (1)誘變

    (2)①兩(或不同)    不能

    ②細(xì)胞質(zhì)(或母系)

    (3)①高蛋白(純合)植株    低蛋白植株(或非高蛋白植株)

    后代(或F1)表現(xiàn)型都是高蛋白植株

    ②測交方案:

    用F1與低蛋白植株雜交

    后代高蛋白植株和低蛋白植株的比例是1:1

    或自交方案:

    F1自交(或雜合高蛋白植株自交)

    后代高蛋白植株和低蛋白植株的比例是3:1

    ③實(shí)驗(yàn)結(jié)果    預(yù)期結(jié)果

31.(18分)

    (1)血糖    胰島素

    (2)減小    增大    胰高血糖素    協(xié)同

    (3)高    減少

    (4)蛋白質(zhì)

 

 

                                             

 

查看答案和解析>>

完成下列反證法證題的全過程:已知0<a≤3,函數(shù)f(x)=x3-ax在區(qū)間[1,+∞)上是增函數(shù),設(shè)當(dāng)x0≥1,f(x0)≥1時,有f(f(x0))=x0,求證:f(x0)=x0

證明:假設(shè)f(x0)≠x0,則必有        

    ,由f(x)在區(qū)間[1,+∞)上是增函數(shù),則f(f(x0))>f(x0).

又f(f(x0))=x0,所以f(x0)<x0,這與    矛盾.

若x0>f(x0)≥1,由f(x)在區(qū)間[1,+∞)上是增函數(shù),則    

又f(f(x0))=x0,所以f(x0)>x0,這與    矛盾.

綜上所述,當(dāng)x0≥1,f(x0)≥1且f(f(x0))=x0時,有f(x0)=x0

查看答案和解析>>

完成下列反證法證題的全過程:

已知0<a≤3,函數(shù)f(x)=x3-ax在區(qū)間[1,+∞)上是增函數(shù),設(shè)當(dāng)x0≥1,f(x0)≥1時,有f(f(x0))=x0,求證:f(x0)=x0

證明:假設(shè)f(x0)≠x0,則必有        

    ,由f(x)在區(qū)間[1,+∞)上是增函數(shù),則f(f(x0))>f(x0).

又f(f(x0))=x0,所以f(x0)<x0,這與    矛盾.

若x0>f(x0)≥1,由f(x)在區(qū)間[1,+∞)上是增函數(shù),則    

又f(f(x0))=x0,所以f(x0)>x0,這與    矛盾.

綜上所述,當(dāng)x0≥1,f(x0)≥1且f(f(x0))=x0時,有f(x0)=x0

查看答案和解析>>

設(shè)函數(shù)

(1)當(dāng)時,求曲線處的切線方程;

(2)當(dāng)時,求的極大值和極小值;

(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

【解析】(1)中,先利用,表示出點(diǎn)的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進(jìn)而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

解:(1)當(dāng)……2分

   

為所求切線方程!4分

(2)當(dāng)

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調(diào)遞增!酀M足要求!10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實(shí)數(shù)的取值范圍是

 

查看答案和解析>>

1.B   提示:在同一坐標(biāo)系中畫出兩函數(shù)y = a |x|與y = |log a x|圖象,如圖

 

2.D提示: 如圖|OM| = 2,|AM| = ,|OA| = 1,∴k = tan∠AOM = 。

 

 

 

 

 

 

3.B提示: A=[0,4],B=[-4,0],

4.D

5.B    提示:如圖

6.C  提示:而|z|表示

7.A  提示:T=2×8=16,則,令

8.A  提示:在同一坐標(biāo)系中作出函數(shù)的圖象,易得。

9.A  提示:在同一坐標(biāo)系中畫出函數(shù)y=4x+1,y=x+2和y=-2x+4的圖象,由圖可知,f(x)的最高點(diǎn)為。

10.D  提示:由可行域易知z=5x+y過點(diǎn)(1,0)時取得最大值5.

11.B 提示: f(x)= f(-x)= f(2-x),故f(x)的草圖如圖:

由圖可知,B正確。

12.C提示:設(shè)橢圓另一焦點(diǎn)為F2,(如圖),,又注意到N、O各為MF1、F1F2的中點(diǎn), ∴ON是△MF1F2的中位線, 

13.f (1) < f (4) < f (- 3)提示:由f (2 + t) = f (2 ? t)知,f(x)的圖象關(guān)于直線x=2對稱,又f (x) = x 2 + bx + c為二次函數(shù),其圖象是開口向上的拋物線,由f(x)的圖象,易知f (1) < f (4) < f (- 3).

14.1 < m < 5提示:設(shè)y 1 = x 2 ? 4|x| + 5,y 2 = m,畫出兩函數(shù)圖象示意圖,要使方程x 2 ? 4|x| + 5 = m有四個不相等實(shí)根,只需使1 < m < 5.

 

 

 

 

 

 

15.

提示:y=x-m表示傾角為45°,縱截距為-m的直線方程,而則表示以(0,0)為圓心,以1為半徑的圓在x軸上方的部分(包括圓與x軸的交點(diǎn)),如下圖所示,顯然,欲使直線與半圓有兩個不同交點(diǎn),只需直線的縱截距,即.

 

 

 

 

 

 

16、

,

九、實(shí)戰(zhàn)演習(xí)

一、選擇題:本大題共12小題,每小題5分,共60分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

1. 方程的實(shí)根的個數(shù)為(    )

    A. 1個      B. 2個      C. 3個      D. 4個

    2. 函數(shù)的圖象恰有兩個公共點(diǎn),則實(shí)數(shù)a的取值范圍是(    )

    A.                    B.

    C.            D.

   3. 若不等式的解集為則a的值為(     )

    A. 1            B. 2            C. 3            D. 4

   4. 若時,不等式恒成立,則a的取值范圍為(    )

A. (0,1)     B. (1,2)     C. (1,2]      D. [1,2]

   5  已知f(x)=(x?a)(x?b)?2(其中ab,且α、β是方程f(x)=0的兩根(αβ,則實(shí)數(shù)a、b、α、β的大小關(guān)系為(    )

A  αabβ            B  αaβb

C  aαbβ            D  aαβb

6.已知x+y+1=0,則的最小值是(    )

A.   B.     C.   D..

7.如圖,是周期為的三角函數(shù)y=f(x)的圖像,那么f(x)可以寫成(    )

A.sin(1+x)     B.sin(-1-x)     C.sin(x-1)     D.sin(1-x)

8.方程x+log3x=2,x+log2x=2的根分別是α、β,那么α與β的大小關(guān)系是(    )

A.α>β     B.α<β    C.α=β    D.不確定.

9.

   

10. 在約束條件下,當(dāng)時,目標(biāo)函數(shù)的最大值的變化范圍是(    )

A.         B.    C.         D.

11. 若不等式在(0,)內(nèi)恒成立,則a的取值范圍(   )

A.[ ,1)     B.( ,1)       C.(0, )     D.(0, ]

12.已知,關(guān)于x的方程有兩個不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是(    )

A.[-2,2]     B.[,2]     C.( ,2]      D.( ,2)

二、填空題:本大題共4小題,每小題4分,共16分,請把答案直接填在題中橫線上.

13.曲線y=1+ (?2≤x≤2)與直線y=r(x?2)+4有兩個交點(diǎn)時,實(shí)數(shù)r的取值范圍___________.

14 . 若關(guān)于x的方程有四個不相等的實(shí)根,則實(shí)數(shù)m的取值范圍為___________。

15.  函數(shù)的最小值為___________。  

16. 對于每個實(shí)數(shù)x,設(shè)f(x)是4x+1,x+2和-2x+4三者中的最小者,則f(x)的最大值為_________.

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出必要的文字說明、證明過程或演算步驟.

    17. (12分)若不等式的解集為A,且,求a的取值范圍。

    18.(12分)設(shè),試求方程有解時k的取值范圍。

19 (12分)已知圓C:(x+2)2+y2=1,點(diǎn)P(x,y)為圓C上任一點(diǎn).

⑴求的最值.       ⑵求x-2y的最值.

20. (12分)設(shè)A={(x,y)|y=,a>0},B={(x,y)|(x?1)2+(y?)2=a2,a>0},且AB,求a的最大值與最小值 

21. (12分)設(shè)f(x)=,a,b∈R,且a≠b.求證:|f(a)-f(b)|<|a-b|.

22  (12分)已知A(1,1)為橢圓=1內(nèi)一點(diǎn),F1為橢圓左焦點(diǎn),P為橢圓上一動點(diǎn)       求|PF1|+|PA|的最大值和最小值 

參考答案:

一、選擇題

    1. C   解析:畫出在同一坐標(biāo)系中的圖象,即可。

  2. D   解析:畫出的圖象

           

    情形1:              情形2:

3. B  解析:畫出的圖象,依題意,從而。

  4. C  解析:令,畫出兩函數(shù)圖象.

      

        a>1                              

若a>1,當(dāng)時,要使,只需使,∴;

,顯然當(dāng)時,不等式恒不成立。

5  A  解析  a,b是方程g(x)=(x?a)(x?b)=0的兩根,在同一坐標(biāo)系中作出函數(shù)f(x)、g(x)的圖象如圖所示 

6. B 解析:方程x+y+1=0表示直線,而式子表示點(diǎn)(1,1)到直線上點(diǎn)的距離,因此式子的最小值就是點(diǎn)(1,1)到直線x+y+1=0的距離,由點(diǎn)到直線的距離公式可求.

7. D  解析:由周期為得,ω=1,令1×1+φ=得, φ=-1.所以y=sin(x+-1)=-sin(x-1)=sin(1-x).

8. A 解析:由題意有, log3x=2-x, log2x=2-x,在同一坐標(biāo)系中作出y=log3x,y=log2x,y=2-x的圖像,

易見α>β.

9. D  解析:k=tan60°=.

     

        (9題圖)                             (10題圖)

10. 解析:畫出可行域如圖

,∴在圖中A點(diǎn)和B點(diǎn)處,目標(biāo)函數(shù)z分別取得最大值的最小和最大.

∴zmax∈[7,8].故選D.

11. 解析:不等式變形為,令y1=x2,y2=logax,如圖

函數(shù)y2過點(diǎn)A()時,a=,為滿足條件的a邊界,故a的范圍是≤a<1.

 

    

       (11題圖)                       (12題圖)

12.D. 解析:在坐標(biāo)系中畫出y=的圖象.

二、填空題

13. (]  解析  方程y=1+的曲線為半圓,y=r(x?2)+4為過(2,4)的直線.     14.   解析:設(shè),

畫出兩函數(shù)圖象示意圖,要使方程有四個不相等實(shí)根,只需使.

 15. 解析:對,它表示點(diǎn)(x,1)到(1,0)的距離;表示點(diǎn)(x,1)到點(diǎn)(3,3)的距離,于是表示動點(diǎn)(x,1)到兩個定點(diǎn)(1,0)、(3,3)的距離之和,結(jié)合圖形,易得。

16. 解析:在同一坐標(biāo)系中畫出三個函數(shù)的圖像,如圖, 由圖知, f(x)的最高點(diǎn)為A(),

所以, f(x)的最大值為.

三、解答題

  17. 解:令表示以(2,0)為圓心,以2為半徑的圓在x軸的上方的部分(包括圓與x軸的交點(diǎn)),如下圖所示,表示過原點(diǎn)的直線系,不等式的解,即是兩函數(shù)圖象中半圓在直線上方的部分所對應(yīng)的x值。

由于不等式解集, 因此,只需要

    ∴a的取值范圍為(2,+)。

       

      (17題圖)                              (18題圖)

18. 解:將原方程化為:,

    ∴

    令,它表示傾角為45°的直線系,;

    令,它表示焦點(diǎn)在x軸上,頂點(diǎn)為(-a,0)(a,0)的等軸雙曲線在x軸上方的部分,

原方程有解,則兩個函數(shù)的圖象有交點(diǎn),由圖知,

.   ∴k的取值范圍為

19 解:

   (1)                                   (2)

(1)設(shè)Q(1,2),則的最值分別為過Q點(diǎn)的圓C的兩條切線的斜率.如圖

設(shè)PQ:y-2=k(x-1),即kx-y+2-k=0

,∴k=或k=.

的最大值為,最小值為.

(2)令x-2y=b,即x-2y―b=0,為一組平行直線系,則x-2y=b的最值就是直線與圓相切時.如圖

得,b=-2+,或b=-2-.

∴x-2y的最大值為-2+,最小值為-2-.

20.解  ∵集合A中的元素構(gòu)成的圖形是以原點(diǎn)O為圓心,a為半徑的半圓;集合B中的元素是以點(diǎn)O′(1,)為圓心,a為半徑的圓  如圖所示 

AB,∴半圓O和圓O′有公共點(diǎn) 

∴當(dāng)半圓O和圓O′外切時,a最小.∴a+a=|OO′|=2,∴amin=2?2

當(dāng)半圓O與圓O′內(nèi)切時, a最大a?a=|OO′|=2,∴amax=2+2 

21.解:由y=得,y2-x2=1(y>x),表示的曲線為雙曲線的上支,且此雙曲線的漸近線為y=±x.

在曲線上任取兩點(diǎn)A(a,f(a)),A(b,f(b)),其斜率為k,由雙曲線性質(zhì)得|k|<1.

,∴|f(a)-f(b)|<|a-b|.

     

      (21題圖)                             (22題圖)

22  解  由可知a=3,b=,c=2,左焦點(diǎn)F1(?2,0),右焦點(diǎn)F2(2,0) 

如圖  由橢圓定義,|PF1|=2a?|PF2|=6?|PF2|,

∴|PF1|+|PA|=6?|PF2|+|PA|=6+|PA|?|PF2

由||PA|?|PF2||≤|AF2|=

?≤|PA|?|PF2|≤  (當(dāng)PAF2延長線上的P2處時,取右“=”號;

當(dāng)PAF2的反向延長線的P1處時,取左“=”號 )

即|PA|?|PF2|的最大、最小值分別為,? 

于是|PF1|+|PA|的最大值是6+,最小值是6? 


同步練習(xí)冊答案