設(shè)M是△ABC內(nèi)一點(diǎn).且.∠BAC=30º.定義f.其中m.n.p分別是△MBC.△MCA.△MAB的面積.若f(M)=(.x.y).則的最小值是 . 查看更多

 

題目列表(包括答案和解析)

設(shè)M是△ABC內(nèi)一點(diǎn),且,∠BAC=30°,定義f(M)=(m,n,p),其中m、n、p分別是△MBC,△MCA,△MAB的面積,若f(M)=(,x,y),則的最小值是………………………………………………………………………………………(    )

A、8            B、9              C、16             D、18

查看答案和解析>>

設(shè)M是△ABC內(nèi)一點(diǎn),且,∠BAC=30°,定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA,△MAB的面積,若f(M)=(,x,y),則的最小值是(    )。

查看答案和解析>>

設(shè)M是△ABC內(nèi)一點(diǎn),且,∠BAC=30°,定義f(M)=(m,n,p)=m+n+p,其中m、n、p分別是△MBC、△MCA、△MAB的面積,當(dāng)f(M)=(,x,y)時,的最小值是

[     ]

A.8
B.9
C.16
D.18

查看答案和解析>>

設(shè)M是△ABC內(nèi)一點(diǎn),且△ABC的面積為1,定義f(M)=(m,n,p),其中m、n、p分別是△MBC,△MCA,△MAB的面積,若f(M)=(
1
2
,x,y),則
1
x
+
4
y
的最小值是( 。
A、8B、9C、16D、18

查看答案和解析>>

設(shè)M是△ABC內(nèi)一點(diǎn),且S△ABC的面積為2,定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA,△MAB的面積,若△ABC內(nèi)一動點(diǎn)P滿足f(P)=(1,x,y),則
1
x
+
4
y
的最小值是( 。

查看答案和解析>>

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

A

D

B

A

A

C

C

D

D

12.提示:由于是中點(diǎn),中,,

所以,所以

二、填空題

13.    14.  52    15.      16. 18

16.提示:由可得,則,所以,所以,,所以;當(dāng)且僅當(dāng)時成立

三、解答題

17.解:由

      (3分)

             (6分)

(2)由(1)知      (8分)

   (10分)

                          (13分)

18.解:,    (2分)

,得     (4分)

                   (5分)

由于,于是有:

(1)當(dāng)時,不等式的解集為      (8分)

(2)當(dāng)時,不等式的解集為         (11分)

(3)當(dāng)時,不等式的解集為             (13分)

19.解:(Ⅰ)由成等差數(shù)列,

,        (2分)

         (5分)

(Ⅱ) (7分)

         (9分)

             (11分)

     (12分)

20.解:(1)由題         (2分)

等差數(shù)列的公差       (4分)

     (5分)

(2),

      ①

    ②       (7分)

則②-①可得:

    (9分)

                     (11分)

                 (12分)

 

21.解:(1)由為奇函數(shù),則,所以,得:   (3分)

(2)由(1)可知           (5分)

, 

所以              (7分)

(3)由得:

          (8分)

  

下求:令, 由于

         (10分)

當(dāng)時,均遞增,所以遞增,

所以當(dāng)取最大值為       所以           (12分)

22.解:(Ⅰ)     (1分)

當(dāng)時,

,即是等比數(shù)列.                 (3分)

 ∴;                          (4分)

(Ⅱ)由(Ⅰ)知,,若為等比數(shù)列,

 則有

,解得,  

再將代入得成立,

所以.                                    (8分)

(III)證明:由(Ⅱ)知,所以

,   

所以,      

從而

.                            (12分)

 


同步練習(xí)冊答案