故 命題人:黃梅一中 石自松審題人:黃岡市教科院 丁明忠紅安七里高中 方忠翔 查看更多

 

題目列表(包括答案和解析)

設(shè)點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當(dāng)時,試寫出拋物線上的三個定點、、的坐標(biāo),從而使得

;

(2)當(dāng)時,若,

求證:;

(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構(gòu)造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補(bǔ)充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設(shè)

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

解:(1)拋物線的焦點為,設(shè)

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因為

所以.

(3) ①取時,拋物線的焦點為

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

,

.

,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)

② 設(shè),分別過

拋物線的準(zhǔn)線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達(dá)式與點的縱坐標(biāo)無關(guān),所以只要將這點都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點,均為反例.)

③ 補(bǔ)充條件1:“點的縱坐標(biāo))滿足 ”,即:

“當(dāng)時,若,且點的縱坐標(biāo))滿足,則”.此命題為真.事實上,設(shè),

分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

又由,所以,故命題為真.

補(bǔ)充條件2:“點與點為偶數(shù),關(guān)于軸對稱”,即:

“當(dāng)時,若,且點與點為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

(本小題滿分15分)已知
(Ⅰ)求的表達(dá)式;
(Ⅱ)定義正數(shù)數(shù)列,證明:數(shù)列是等比數(shù)列;

20070212

 
  (Ⅲ)令成立的最小n值.

命題人:袁衛(wèi)剛  校對人:沈秋華

查看答案和解析>>

(本小題滿分10分)

已知函數(shù),當(dāng)點 (xy) 是函數(shù)y = f (x) 圖象上的點時,點是函數(shù)y = g(x) 圖象上的點.

寫出函數(shù)y = g (x) 的表達(dá)式;

當(dāng)g(x)-f (x)0時,求x的取值范圍;

當(dāng)x在 (2) 所給范圍內(nèi)取值時,求的最大值.

(命題人:褚曉燕      審題人:梁雅峰)

查看答案和解析>>

下列四個說法是否正確,請給予判斷:?

(1)直線l平行于平面α內(nèi)無數(shù)條直線,則lα;?

(2)若直線a在平面α外,則aα;?

(3)若直線ab,直線bα,則aα;?

(4)若直線ab,bα,那么直線a就平行于平面內(nèi)的無數(shù)條直線.?

這四種說法只有第(4)個是正確的.∵直線l雖與平面α內(nèi)無數(shù)條直線平行,但l有可能_________,∴l不一定平行于α,∴命題(1)是錯誤的.∵直線a在平面α外,包括兩種情況:aαaα________,∴aα不一定平行.∴未必有aα,故命題(2)是錯誤的.直線ab,bα,則只能說明ab_________,但a可能在__________,∴a不一定?平行于α.∴命題(3)也是錯誤的.對于命題(4)而言,∵ab,bα,?∴a______αa______α.∴a可能與平面α內(nèi)的無數(shù)條直線平行.

查看答案和解析>>

(08年長沙一中一模文)同住一間寢室的四名女生,她們當(dāng)中有一人在修指甲,一人在看書,一人在梳頭發(fā),另一個在聽音樂。

       (1)A不在修指甲,也不在看書;(2)B不在聽音樂,也不在修指甲;(3)如果A不在聽音樂,那么C不在修指甲;(4)D既不在看書,也不在修指甲;(5)C既不在看書,也不在聽音樂。若上面的命題都是真命題,問她們各在做什么?

A 在________;B在        ;C在         ;D在         。

查看答案和解析>>


同步練習(xí)冊答案