題目列表(包括答案和解析)
三、解答題:本大題共6小題,共70分.解答應寫出文字說明,證明過程或演算步驟.
17.(本小題滿分10分)
如圖,P,Q是以原點為圓心的單位圓上的兩個動點,若它們同時從點A(1,0)出發(fā),沿逆時針方向作勻角速度運動,其角速度分別為(單位:弧度/秒),M為線段PQ的中點,記經(jīng)過x秒后(其中),
(I)求的函數(shù)解析式;
(II)將圖象上的各點均向右平移2個單位長度,得到的圖象,求函數(shù)的單調(diào)遞減區(qū)間.
四.本大題共6小題,共75分.解答應寫出文字說明、證明過程或演算步驟.
16.(本小題滿分12分)
某飲料公司招聘一名員工,現(xiàn)對其進行一項測試,以便確定工資級別.公司準備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定為3500元;若4杯選對3杯,則月工資定為2800元;否則月工資定為2100元.令X表示此人選對A飲料的杯數(shù).假設次人對A和B兩種飲料沒有鑒別能力.
(1)求X的分布列;
(2)求此員工月工資的期望.
給出定義:若(其中為整數(shù)),則叫做離實數(shù)最近的整數(shù),記作,在此基礎上給出下列關(guān)于函數(shù)的四個命題:
①函數(shù)=的定義域為,最大值是;②函數(shù)=在上是增函數(shù);
③函數(shù)=是周期函數(shù),最小正周期為1;④函數(shù)=的圖象的對稱中心是(0,0).
其中正確命題的序號是__________
三、解答題(本大題共6小題,共80分.解答應寫出文字說明,證明過程或演算步驟.)
三、解答題:(本大題共6小題,共75分,解答應寫出文字說明、證明過程或演算步驟.)
16. (本小題滿分12分)
已知向量,定義函數(shù)
(Ⅰ)求函數(shù)最小正周期;
(Ⅱ)在△ABC中,角A為銳角,且,求邊AC的長.
.三、解答題:本大題共6小題,共75分. 解答應寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形的一個內(nèi)角,求滿足的的值.
1. 2.必要補充分 3. 4. 5. 38 6.①④ 7. 8.16
9. 10 ② 11.-3 12. 13. 13 14.
15 解:(1)將
(2)由(1)及
16.證明;(1)
(2)存在點N為線段AB上靠近點A的四等分點
17.解:(1)∵面C的圓心在第二象限,且與直線y=x相切與坐標原點O,
故可設圓心為(-m,m)(m>0)
∴圓C的半徑為
令x=0,得 y=0,或y=2m
∵圓C在y軸上截得的弦長為4.
∴
(2)由條件可知
又O,Q在圓C上,所以O,Q關(guān)于直線CF 對稱;
直線CF的方程為
設
18.解:設公司裁員人數(shù)為x,獲得的經(jīng)濟效益為y元,
則由題意得當
①
②
由①得對稱軸
由②得對稱軸
即當公司應裁員數(shù)為,即原有人數(shù)的時,獲得的經(jīng)濟效益最大。
19.解:(1)
一般地,
即-=2
即數(shù)列{}是以,公差為2的等差數(shù)列。
即數(shù)列{}是首項為,公比為的等比數(shù)列
(2)
(3)
注意到對任意自然數(shù)
要對任意自然數(shù)及正數(shù),都有
此時,對任意自然數(shù),
20解:(1)
方程無解
①
②
③
由②
④
同上可得方程在上至少有一解。
綜上得所求的取值范圍為
:
∴所證結(jié)論成立
單調(diào)遞增
單調(diào)遞增
所證結(jié)論成立
2009屆江蘇省百校高三樣本分析考試
數(shù)學附加題參考答案
1.(A)解:(1)取BD的中點O,連結(jié)OE,則 OE為△BDE的外接圓半徑,
∵BE平分∠ABC,∴∠CBE=∠OBE,又 ∵OB=OE,∴∠OBE=∠BEO
∴∠CBE=∠BEO,∴BC∥OE. …………………………………3分
∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線……5分
(2)設⊙O的半徑為r,則在△AOE中,
OA2=OE2+AE2,即,……7分
∴AO=2OB , 由(1)得OE∥BC,
,
∴EC=3 ………………………………………………………………………………10分
1.(B)解:(1)設A的一個特征值為,由題意知:
……………………3分
…5分
(2) ………………………………………7分
故……10分
1.(C)解:由題設知,圓心 ………………………………………………2分
∠CPO=60°,故過P點的切線飛傾斜角為30° ……………………………………4分
設,是過P點的圓C的切線上的任一點,則在△PMO中,
∠MOP=
由正弦定理得 ……………7分
,即為所求切線的極坐標方程!10分
1.(D)解:由柯西不等式
當且僅當 時取等號 …………………………………………8分
由 …………………………………………………………10分
2.解:以O為原點,分別以OBOC OA為x軸、y軸、z軸,建立空間直角坐標O-xyz
(如圖),則A(0,0,2), B(2,0,0), C(0,2,0), E(
……………………………4分
∵異面直線BE與AC所成的角是銳角
故其余弦值是 …………………………………………………………………………5分
(2)
………………………………………………………………7分
而平面AEC的一個法向量為
………………………………………………9分
由于二面角A-BE-C為鈍角,故其余弦值是 ……………………………………10分
3.解:(1)分別記甲、乙、丙三個同學復檢合格為事件A1、A2、A3,E表示事件“恰有一人通過筆試。
……………………………………………………5分
(2)(法一)因為甲、乙、丙三個同學通過三關(guān)的概率均為 ……………………7分
所X~B(3,0,3) ……………………………………………………………………8分
故 ……………………………………………………10分
(法二)分別記甲、乙、丙三個同學經(jīng)過兩次考試后合格為事件A、B、C,
則 ………………………………………………………………7分
……………………………………………8分
…………………………9分
于是, …………………………10分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com