題目列表(包括答案和解析)
某高中有在校學(xué)生3000人.為了響應(yīng)“陽光體育運(yùn)動”的號召,學(xué)校舉行了跳繩和跑步比賽活動.每位學(xué)生都參加而且只參與了其中一項(xiàng)比賽,各年級參與比賽人數(shù)情況如下表:
|
A、72人 | B、54人 |
C、42人 | D、30人 |
高一級 | 高二級 | 高三級 | |
跑步 | a | b | c |
爬山 | x | y | z |
1 |
4 |
A、15人 | B、30人 |
C、40人 | D、45人 |
(本小題滿分12分)已知A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7}且A∩B=C求x,y的值及A∪B.
設(shè)集合A=,B=,則AB等于( )
(A) (B) (C){x|x>-3} (D) {x|x<1}
(06年北京卷文)設(shè)集合A=,B=,則AB等于( )
(A) (B) (C){x|x>-3} (D) {x|x<1}
一、選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
選項(xiàng)
A
C
C
B
D
B
A
D
A
C
D
D
二、填空題
13、45 14、 15、 16、0.94 17、 18、
三、解答題
19、解:f(x)=?(-1)
f(x)=(2x+1)=2?0+1=1
∴
20、解:(1)當(dāng)a=2時,A=(2,7),B=(4,5)∴ AB=(4,5)
(2)∵ B=(
當(dāng)a<時,A=(
當(dāng)a=時,A=,使BA的a不存在;
當(dāng)a>時,A=(2,
綜上可知,使BA的實(shí)數(shù)a的取值范圍為[1,3]∪{-1}
21、解:(1)ξ可能的取值為0,1,2,3.
P(ξ=0)=?== P(ξ=1)=?+?=
P(ξ=2)=?+?= P(ξ=3)=?=.
ξ的分布列為
ξ
0
1
2
3
P
數(shù)學(xué)期望為Eξ=1.2.
(2)所求的概率為
p=P(ξ≥2)=P(ξ=2)+P(ξ=3)=+=
22、解:,(2分)
因?yàn)楹瘮?shù)在處的切線斜率為-3,
所以,即, 1
又得。 2
(1)函數(shù)在時有極值,所以, 3
解123得,
所以.
(2)因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)在區(qū)間上的值恒大于或等于零,
則得,所以實(shí)數(shù)的取值范圍為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com