(Ⅱ)若.試證直線恒過定點(diǎn). 查看更多

 

題目列表(包括答案和解析)

直線l與拋物線y2=4x交于兩點(diǎn)A、B,O為原點(diǎn),且
OA
OB
=-4
(1)求證:直線l恒過一定點(diǎn);
(2)若4
6
≤|AB|≤4
30
,求直線l的斜率k的取值范圍;
(3)設(shè)拋物線的焦點(diǎn)為F,∠AFB=θ,試問θ角能否等于120°?若能,求出相應(yīng)的直線l的方程;若不能,請說明理由.

查看答案和解析>>

直線l與拋物線y2=4x交于兩點(diǎn)A、B,O為原點(diǎn),且=-4
(1)求證:直線l恒過一定點(diǎn);
(2)若4≤|AB|≤4,求直線l的斜率k的取值范圍;
(3)設(shè)拋物線的焦點(diǎn)為F,∠AFB=θ,試問θ角能否等于120°?若能,求出相應(yīng)的直線l的方程;若不能,請說明理由.

查看答案和解析>>

已知,若過定點(diǎn)、以(λ∈R)為法向量的直線l1與過點(diǎn)為法向量的直線l2相交于動點(diǎn)P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個定點(diǎn)E,F(xiàn),使得恒為定值;
(3)在(2)的條件下,若M,N是上的兩個動點(diǎn),且,試問當(dāng)|MN|取最小值時,向量是否平行,并說明理由.

查看答案和解析>>

(12分)已知點(diǎn)A(-1,0),B(1,-1)和拋物線.,O為坐標(biāo)原點(diǎn),過點(diǎn)A的動直線l交拋物線CM、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.

   (I)若△POM的面積為,求向量的夾角。

   (II)試證明直線PQ恒過一個定點(diǎn)。

        

查看答案和解析>>

已知點(diǎn)A(-1,0),B(1,-1)和拋物線.,O為坐標(biāo)原點(diǎn),過點(diǎn)A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.

   (I)若△POM的面積為,求向量的夾角。

   (II)試證明直線PQ恒過一個定點(diǎn)。

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

解答

D

D

A

B

D

C

C

B

D

D

二、填空題:本大題共7小題,每小題4分,共28分

11.   負(fù)                                        12.            

13.    7                                        14.                            

15.   4010                                    16.                         

17.若他不放棄這5道題,則這5道題得分的期望為:                                                                           

三、解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

18.解:(Ⅰ)①,②,③,④處的數(shù)值分別為:3,0.025,0.100,1.…………4分

(Ⅱ)

            …………………………………………………………………………8分

(Ⅲ)(?)120分及以上的學(xué)生數(shù)為:(0.275+0.100+0.050)×5000=2125;

(?)平均分為:

(?)成績落在[126,150]中的概率為:

…………………………………………………………………………14分

19.解:(Ⅰ) 由三視圖可知,四棱錐的底面是邊長為1的正方形,

側(cè)棱底面,且.                           

,

即四棱錐的體積為.             ………………………………4分

(Ⅱ) 不論點(diǎn)在何位置,都有.                            

證明如下:連結(jié),∵是正方形,∴.          

底面,且平面,∴.        

又∵,∴平面.                        

∵不論點(diǎn)在何位置,都有平面

∴不論點(diǎn)在何位置,都有.        ………………………………8分

(Ⅲ) 解法1:在平面內(nèi)過點(diǎn),連結(jié).

,,,

∴Rt△≌Rt△

從而△≌△,∴.

為二面角的平面角.                           

在Rt△中,,

,在△中,由余弦定理得

,             

,即二面角的大小為.  …………………14分

 

解法2:如圖,以點(diǎn)為原點(diǎn),所在的直線分別為軸建立空間直角

坐標(biāo)系. 則,從而

,,.

設(shè)平面和平面的法向量分別為

,,

,取.   

,取

設(shè)二面角的平面角為,

,       

  ∴,即二面角的大小為.    …………………14分

20.解:(Ⅰ)令

、

由①、②知,,又上的單調(diào)函數(shù),

.     ………………………………………………………………………4分

(Ⅱ),

,

     …………………………………………………………………10分

(Ⅲ)令,則

         ……………………12分

都成立

  

        …………………………………………………………………………………15分

21.解:(Ⅰ)設(shè)B(,),C(,),BC中點(diǎn)為(),F(2,0).

則有.

兩式作差有

.

設(shè)直線BC的斜率為,則有

.  (1)

因F2(2,0)為三角形重心,所以由,得

代入(1)得.

直線BC的方程為.      …………………………………………7分

 (Ⅱ)由AB⊥AC,得  (2)

設(shè)直線BC方程為,得

,

 

代入(2)式得,,

解得

故直線過定點(diǎn)(0,.        …………………………………………14分

22.解:(Ⅰ)

.

當(dāng)時,

.從而有.…………………5分

(Ⅱ)設(shè)P,切線的傾斜角分別為,斜率分別為.則

由切線軸圍成一個等腰三角形,且均為正數(shù)知,該三角形為鈍角三角形,

 或   .又

.從而,

…………………………………………………………………………………10分

(Ⅲ)令

;

當(dāng)時,即時,曲線與曲線無公共點(diǎn),故方程無實數(shù)根;

當(dāng)時,即時,曲線與曲線有且僅有1個公共點(diǎn),故方程有且僅有1個實數(shù)根;

當(dāng)時,即時,曲線與曲線有2個交點(diǎn),故方程有2個實數(shù)根.         …………………………………………………………………15分

 

 

 


同步練習(xí)冊答案