解:(1)由已知得.而. 查看更多

 

題目列表(包括答案和解析)

已知條件p:|x-1|>a(a≥0)和條件q:lg(x2-3x+3)>0,
(1)求滿足條件p,q的不等式的解集.
(2)分別利用所給的兩個(gè)條件作為A,B構(gòu)造命題:“若A,則B”,問是否存在非負(fù)實(shí)數(shù)a使得構(gòu)造的原命題為真命題,而其逆命題為假命題,若存在,求出a的取值范圍.若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知函數(shù)f(x)的圖象可由函數(shù)g(x)=
4x+m2
2x
(m為非零常數(shù))
的圖象向右平移兩個(gè)單位而得到.
(1)寫出函數(shù)f(x)的解析式;
(2)證明函數(shù)f(x)的圖象關(guān)于直線y=x對(duì)稱;
(3)問:是否存在集合M,當(dāng)x∈M時(shí),函數(shù)f(x)的最大值為2+m2,最小值為2-
m2
9
;若存在,試求出一個(gè)集合M;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知,(其中

⑴求

⑵試比較的大小,并說明理由.

【解析】第一問中取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得

,則得到結(jié)論

第二問中,要比較的大小,即比較:的大小,歸納猜想可得結(jié)論當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),;

猜想:當(dāng)時(shí),運(yùn)用數(shù)學(xué)歸納法證明即可。

解:⑴取,則;                         …………1分

對(duì)等式兩邊求導(dǎo),得,

,則。       …………4分

⑵要比較的大小,即比較:的大小,

當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí),;                              …………6分

猜想:當(dāng)時(shí),,下面用數(shù)學(xué)歸納法證明:

由上述過程可知,時(shí)結(jié)論成立,

假設(shè)當(dāng)時(shí)結(jié)論成立,即,

當(dāng)時(shí),

時(shí)結(jié)論也成立,

∴當(dāng)時(shí),成立。                          …………11分

綜上得,當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí), 

 

查看答案和解析>>

已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,

(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和

(2)求數(shù)列的前n項(xiàng)和;

(3)證明:不等式  對(duì)任意的,都成立.

【解析】第一問中,由于所以

兩式作差,然后得到

從而得到結(jié)論

第二問中,利用裂項(xiàng)求和的思想得到結(jié)論。

第三問中,

       

結(jié)合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項(xiàng)數(shù)列,∴           ∴ 

又n=1時(shí),

   ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        ,

   ∴不等式  對(duì)任意的都成立.

 

查看答案和解析>>

已知數(shù)列滿足,

(1)求證:數(shù)列是等比數(shù)列;

(2)求數(shù)列的通項(xiàng)和前n項(xiàng)和

【解析】第一問中,利用,得到從而得證

第二問中,利用∴ ∴分組求和法得到結(jié)論。

解:(1)由題得 ………4分

                    ……………………5分

   ∴數(shù)列是以2為公比,2為首項(xiàng)的等比數(shù)列;   ……………………6分

(2)∴                                  ……………………8分

     ∴                                  ……………………9分

     ∴

 

查看答案和解析>>


同步練習(xí)冊(cè)答案