∴的斜率為1的切線為 -------8分 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)

(1)當(dāng)時,求曲線處的切線方程;

(2)當(dāng)時,求的極大值和極小值;

(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.

【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當(dāng),再令,利用導(dǎo)數(shù)的正負(fù)確定單調(diào)性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導(dǎo)數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

解:(1)當(dāng)……2分

   

為所求切線方程!4分

(2)當(dāng)

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調(diào)遞增。∴滿足要求。…10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實數(shù)的取值范圍是

 

查看答案和解析>>

橢圓=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,過焦點F1的傾斜角為30°直線交橢圓于A,B兩點,弦長|AB|=8,若三角形ABF2的內(nèi)切圓的面積為π,則橢圓的離心率為

[  ]
A.

B.

C.

D.

查看答案和解析>>

(理)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點的橢圓恰與直線l也相切,切點為T,求橢圓的方程及點T的坐標(biāo);

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且()p2=m,m∈[,],求(1)中切點T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點的橢圓恰好過點F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且()p2=m,m∈[,],求直線PQ的斜率的取值范圍.

查看答案和解析>>

(理)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點的橢圓恰與直線l也相切,切點為T,求橢圓的方程及點T的坐標(biāo);

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且p2=m,m∈,求(1)中切點T到直線PQ的距離的最小值.

(文)如圖,與拋物線x2=-4y相切于點A(-4,-4)的直線l分別交x軸、y軸于點F、E,過點E作y軸的垂線l0.

(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點的橢圓恰好過點F,求橢圓的方程;

(2)若直線l與雙曲線6x2-λy2=8的兩個交點為M、N,且點A為線段MN的中點,又過點E的直線與該雙曲線的兩支分別交于P、Q兩點,記在x軸正方向上的投影為p,且=m,m∈,求直線PQ的斜率的取值范圍.

查看答案和解析>>

已知為橢圓的左、右焦點,過橢圓右焦點F2斜率為)的直線與橢圓相交于兩點,的周長為8,且橢圓C與圓相切。
(1)求橢圓的方程;
(2)設(shè)為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為,求證為定值.

查看答案和解析>>


同步練習(xí)冊答案