如圖.已知雙曲線C1:=1,圓C2:(x-2)2+y2=2,雙曲線C1的兩條漸近線與圓C2相切.且雙曲線C1的一個頂點A與圓心C2關(guān)于直線y=x對稱.設(shè)斜率為k的直線l過點C2.(1)求雙曲線C1的方程, 查看更多

 

題目列表(包括答案和解析)

如圖,已知雙曲線C1=1(m>0,n>0),圓C2:(x-2)2+y2=2,雙曲線C1的兩條漸近線與圓C2相切,且雙曲線C1的一個頂點A與圓心C2關(guān)于直線y=x對稱,設(shè)斜率為k的直線l過點C2
(1)求雙曲線C1的方程;
(2)當(dāng)k=1時,在雙曲線C1的上支上求一點P,使其與直線l的距離為2.

查看答案和解析>>

如圖,已知雙曲線C1
y2
m
-
x2
n
=1(m>0,n>0),圓C2:(x-2)2+y2=2,雙曲線C1的兩條漸近線與圓C2相切,且雙曲線C1的一個頂點A與圓心C2關(guān)于直線y=x對稱,設(shè)斜率為k的直線l過點C2
(1)求雙曲線C1的方程;
(2)當(dāng)k=1時,在雙曲線C1的上支上求一點P,使其與直線l的距離為2.

查看答案和解析>>

如圖,已知雙曲線C1=1(m>0,n>0),圓C2:(x-2)2y2=2,雙曲線C1的兩條漸近線與圓C2相切,且雙曲線C1的一個頂點A與圓心C2關(guān)于直線yx對稱,設(shè)斜率為k的直線l過點C2

(1)求雙曲線C1的方程;

(2)當(dāng)k=1時,在雙曲線C1的上支上求一點P,使其與直線l的距離為2.

查看答案和解析>>

如圖,已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的一條準(zhǔn)線方程是x=
25
4
,其左、右頂點分別是A、B;雙曲線C2
x2
a2
-
y2
b2
=1
的一條漸近線方程為3x-5y=0.
(1)求橢圓C1的方程及雙曲線C2的方程;
(2)在第一象限內(nèi)取雙曲線C2上一點P,直線AP、PB分別交橢圓C1于點M、點N,若△AMN與△PMN的面積相等.①求P點的坐標(biāo) ②求證:
MN
AB
=0

查看答案和解析>>

如圖,拋物線C1:y2=8x與雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)有公共焦點F2,點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1,已知點P(1,
3
),過點P作互相垂直且分別與圓M圓N相交的直線l1,l2,設(shè)l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,
s
t
是否為定值?請說明理由.

查看答案和解析>>


同步練習(xí)冊答案