該地區(qū)的經(jīng)濟量隨時間的變化圖象大致可能是 查看更多

 

題目列表(包括答案和解析)

函數(shù)y=ax+b和y=bax(a≠0,b>0,且b≠1)的圖象只可能是(  )

查看答案和解析>>

已知a>0,且a≠1,則在同一直角坐標系中,函數(shù)y=a-x 和y=loga(-x)的圖象有可能是(  )

查看答案和解析>>

給出下列命題:
(1)冪函數(shù)的圖象都過點(1,1),(0,0);
(2)冪函數(shù)的圖象不可能是一條直線;
(3)n=0時,函數(shù)y=xn的圖象是一條直線;
(4)冪函數(shù)y=xn當(dāng)n>0時,是增函數(shù);
(5)冪函數(shù)y=xn當(dāng)n<0時,在第一象限內(nèi)函數(shù)值隨x值的增大而減少.其中正確的命題序號為

查看答案和解析>>

6、當(dāng)0<a<1時,函數(shù)y=logax和y=(1-a)x的圖象只可能是( 。

查看答案和解析>>

8、函數(shù)y=-x+b與y=b-x(其中b>0,且b≠1)在同一坐標系中的圖象只可能是( 。

查看答案和解析>>

1.A      2.C       3.B       4.A      5.C       6.C       7.D      8.C       9.D      10.B 學(xué)科網(wǎng)(Zxxk.Com)

1l.B      12.A學(xué)科網(wǎng)(Zxxk.Com)

1.解析:,故選A.學(xué)科網(wǎng)(Zxxk.Com)

2.解析:學(xué)科網(wǎng)(Zxxk.Com)

       ,∴選C.學(xué)科網(wǎng)(Zxxk.Com)

3.解析:是增函數(shù)  學(xué)科網(wǎng)(Zxxk.Com)

       故,即學(xué)科網(wǎng)(Zxxk.Com)

       又學(xué)科網(wǎng)(Zxxk.Com)

       ,故選B.學(xué)科網(wǎng)(Zxxk.Com)

學(xué)科網(wǎng)(Zxxk.Com)4.解析:如圖作出可行域,作直線,平移直線位置,使其經(jīng)過點.此時目標函數(shù)取得最大值(注意反號)學(xué)科網(wǎng)(Zxxk.Com)

學(xué)科網(wǎng)(Zxxk.Com)

學(xué)科網(wǎng)(Zxxk.Com)

       ,故選A學(xué)科網(wǎng)(Zxxk.Com)

5.解析:設(shè)有人投中為事件,則,學(xué)科網(wǎng)(Zxxk.Com)

       故選C.學(xué)科網(wǎng)(Zxxk.Com)

6.解析:展開式中能項;學(xué)科網(wǎng)(Zxxk.Com)

       學(xué)科網(wǎng)(Zxxk.Com)

       由,得,故選C.

7.解析:

       由

,故選D.

8.略

9.解析:由得準線方程,雙曲線準線方程為

       ,解得,

       ,故選D.

10.解析:設(shè)正四面體的棱長為2,取中點為,連接,則所成的角,在

,故選B.

11.解析:由題意,則,故選B.

12.解析:由已知,

       為球的直徑

       ,又,

       設(shè),則

       ,

      

       又由,解得

       ,故選A.

另法:將四面體置于正方休中.

       正方體的對角線長為球的直徑,由此得,然后可得

二、

13.解析:上的投影是

14.解析:,且

15.解析:,

      

       由余弦定理為鈍角

       ,即,

       解得

16.

解析:容易知命題①是錯的,命題②、③都是對的,對于命題④我們考查如圖所示的正方體,設(shè)棱長為,顯然為平面內(nèi)兩條距離為的平行直線,它們在底面內(nèi)的射影仍為兩條距離為的平行直線,但兩平面卻是相交的.

三、

17.解:(1),

             

,故

       (2)

              由

設(shè)邊上的高為,則

18.(1)設(shè)甲、乙兩人同時參加災(zāi)區(qū)服務(wù)為事件,則

(2)記甲、乙兩人同時參加同一災(zāi)區(qū)服務(wù)為事件,那么

(3)隨機變量可能取得值為1,2,事件“”是指有兩人同時參加災(zāi)區(qū)服務(wù),則,所以

分布列是

1

2

19.解:(1)平面

              ∵二面角為直二面角,且,

             

平面              平面

(2)(法一)連接與高交于,連接是邊長為2的正方形,                  ,

二平面,由三垂線定理逆定理得

是二面角的平面角

由(1)平面

中,

∴在中,

故二面角等于

(2)(法二)利用向量法,如圖以之中點為坐標原點建立空間坐標系,則

             

             

              ,

              設(shè)平面的法向量分別為,則由

              ,而平面的一個法向理

             

              故所求二面角等于

20.解:(1)由題設(shè),即

              易知是首項為、公差為2的等差數(shù)列,

              ∴通項公式為,

       (2)由題設(shè),,得是以公比為的等比數(shù)列.

             

              由

21.解:(1)由題意,由拋物線定義可求得曲線的方程為

(2)證明:設(shè)、的坐標分別為

             若直線有斜率時,其坐標滿足下列方程組:

              ,        

              若沒有斜率時,方程為

              又

             

              ;又,

                         

22.(1)解:,于是,

              解得

              因,故

(2)證明:已知函數(shù)都是奇函數(shù).

所以函數(shù)也是奇函數(shù),其圖象是以原點為中心的中心對稱圖形,而

可知.函數(shù)的圖象按向量平移,即得到函數(shù)的圖象,故函數(shù)的圖象是以點(1,1)為中心的中心對稱圖形,

(3)證明;在曲線上作取一點,

       由知,過此點的切線方程為

,得,切線與直線交點為

,得切線與直線交點為,直線與直線與直線的交點為(1,1).

從而所圍三角形的面積為        

所以,圍成三角形的面積為定值2.

www.ks5u.com

 

 


同步練習(xí)冊答案