題目列表(包括答案和解析)
A、①③ | B、①④ | C、②③ | D、②④ |
以A={2,4,6,7,8,11,12,13}中的任意兩個(gè)元素分別為分子與分母構(gòu)成分?jǐn)?shù),則這種分?jǐn)?shù)是可約分?jǐn)?shù)的概率是
[選做題] 在A(yíng)、B、C、D四小題中只能選做2題,每小題10分,計(jì)20分.請(qǐng)把答案寫(xiě)在答題紙的指定區(qū)域內(nèi).
A.(選修4—1:幾何證明選講)
過(guò)⊙外一點(diǎn)作⊙的切線(xiàn),切點(diǎn)為,連接與⊙交于點(diǎn),過(guò)作的垂線(xiàn),垂足為.若=12㎝,=6㎝,求的長(zhǎng).
1.B 2.A 3.C 4.B 5.A 6.D 7.B 8.C 9.C 1 0.B
11.B 12.D
1..
2.
3.是方程的根,或8,又,
.
4..
5.畫(huà)出可行域,如圖,可看為區(qū)域內(nèi)的點(diǎn)與(0,0)連線(xiàn)的斜率,.
.
6.
7.在中,,在中,,
在中,,在中,,.
8.的圖象如圖所示
的解集為.
9.由知點(diǎn)的軌跡是以,為焦點(diǎn)的雙曲線(xiàn)一支.,.
10.由獨(dú)立重復(fù)試驗(yàn)的概率.
11.設(shè),圓為最長(zhǎng)弦為直徑,最短弦的中點(diǎn)為,
12.幾何體的表面積是三個(gè)圓心角為、半徑為1的扇形面積與半徑為1的球面積的之和,即表面積為.
二、
13.平方得
.
14.的系數(shù)
15.1.與互為反函數(shù),
令,
.
16.0或 ,設(shè)點(diǎn)的橫坐標(biāo)為點(diǎn)處的切線(xiàn)斜率為,由夾角公式得,即
若,得,矛盾
若
或.
三、
17.(1),由,得,消去得
.
.
(2)
,
.
時(shí),的最大值為時(shí),的最大值為2.
18.(1)從3種服裝商品、2種家電商品,4種日用商品中,選出3種商品,一共有種不同的選法.選出的3種商品中,沒(méi)有日用商品的選法有種。所以選出的3種商品至少有一種日用商品的概率為.
(2)假設(shè)商場(chǎng)將中獎(jiǎng)獎(jiǎng)金數(shù)額定為元,則顧客在三歡抽獎(jiǎng)中所獲得的獎(jiǎng)金總額是一個(gè)隨機(jī)變量,其所有可能的取值為
于是顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額的期望值是
.
要使促銷(xiāo)方案對(duì)商場(chǎng)有利,因此應(yīng)有,.
故商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為120元.才能使促銷(xiāo)方案對(duì)自己有利.
19.(1)證明:.
連接.
,又
即 平面.
(2)方法1 取的中點(diǎn),的中點(diǎn),為的中點(diǎn),或其補(bǔ)角是與所成的角.
∴連接是斜邊上的中線(xiàn),,
.
在中,由余弦定理得,
∴直線(xiàn)與所成的角為.
(3)方法l
平面,過(guò)作于,連接,
是在平面上的射影,由三垂線(xiàn)定理得.
是二面角的平面角,
,又.
在中,,.
∴二面角為.
(2)方法2
建立空間直角坐標(biāo)系.
則
.
.
∴直線(xiàn)與所成的角為.
(3)方法2
在坐標(biāo)系中,平面的法向量.
設(shè)平面的法向量,則,
求得,
∴二面角為.
20.是首項(xiàng)為、公比為的等比數(shù)列,
(1)當(dāng)時(shí),
兩式相減得
.
(2)
當(dāng)時(shí),,,對(duì),,而,
時(shí),成立,即.
當(dāng)時(shí),.
對(duì)遞增,時(shí),
時(shí),對(duì)成立,即,
綜上得,的取值范圍是.
21.(1)設(shè).
由拋物線(xiàn)定義,,
.
在上,,又
或舍去.
∴橢圓的方程為.
(2)∵直線(xiàn)的方程為為菱形,
,設(shè)直線(xiàn)的方程為
、在橢圓上,
.
設(shè),則.
.
的中點(diǎn)坐標(biāo)為,由為菱形可知,點(diǎn)在直線(xiàn)上,
∴直線(xiàn)的方程為,即.
22.(1),切線(xiàn)的議程為,即.
令得,令得,
,
.
(2)由及得,即.
于是
當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.
時(shí),時(shí),.
(3)
由得
當(dāng),即時(shí),,
當(dāng),即時(shí),
時(shí),取得最小值,最小值為.
由,得,此時(shí),最小值為.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com