題目列表(包括答案和解析)
(本小題滿分12分)二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn).
(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數(shù)列{an}中,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;
(Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有(本小題滿分12分)已知函數(shù),其中a為常數(shù).
(Ⅰ)若當(dāng)恒成立,求a的取值范圍;
(Ⅱ)求的單調(diào)區(qū)間.(本小題滿分12分)
甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.
(1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m
(2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.
1.B 2.A 3.C 4.B 5.A 6.D 7.B 8.C 9.C 1 0.B
11.B 12.D
1..
2.
3.是方程的根,或8,又,
.
4..
5.畫出可行域,如圖,可看為區(qū)域內(nèi)的點(diǎn)與(0,0)連線的斜率,.
.
6.
7.在中,,在中,,
在中,,在中,,.
8.的圖象如圖所示
的解集為.
9.由知點(diǎn)的軌跡是以,為焦點(diǎn)的雙曲線一支.,.
10.由獨(dú)立重復(fù)試驗(yàn)的概率.
11.設(shè),圓為最長(zhǎng)弦為直徑,最短弦的中點(diǎn)為,
12.幾何體的表面積是三個(gè)圓心角為、半徑為1的扇形面積與半徑為1的球面積的之和,即表面積為.
二、
13.平方得
.
14.的系數(shù)
15.1.與互為反函數(shù),
令,
.
16.0或 ,設(shè)點(diǎn)的橫坐標(biāo)為點(diǎn)處的切線斜率為,由夾角公式得,即
若,得,矛盾
若
或.
三、
17.(1),由,得,消去得
.
.
(2)
,
.
時(shí),的最大值為時(shí),的最大值為2.
18.(1)從3種服裝商品、2種家電商品,4種日用商品中,選出3種商品,一共有種不同的選法.選出的3種商品中,沒(méi)有日用商品的選法有種。所以選出的3種商品至少有一種日用商品的概率為.
(2)假設(shè)商場(chǎng)將中獎(jiǎng)獎(jiǎng)金數(shù)額定為元,則顧客在三歡抽獎(jiǎng)中所獲得的獎(jiǎng)金總額是一個(gè)隨機(jī)變量,其所有可能的取值為
于是顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額的期望值是
.
要使促銷方案對(duì)商場(chǎng)有利,因此應(yīng)有,.
故商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為120元.才能使促銷方案對(duì)自己有利.
19.(1)證明:.
連接.
,又
即 平面.
(2)方法1 取的中點(diǎn),的中點(diǎn),為的中點(diǎn),或其補(bǔ)角是與所成的角.
∴連接是斜邊上的中線,,
.
在中,由余弦定理得,
∴直線與所成的角為.
(3)方法l
平面,過(guò)作于,連接,
是在平面上的射影,由三垂線定理得.
是二面角的平面角,
,又.
在中,,.
∴二面角為.
(2)方法2
建立空間直角坐標(biāo)系.
則
.
.
∴直線與所成的角為.
(3)方法2
在坐標(biāo)系中,平面的法向量.
設(shè)平面的法向量,則,
求得,
∴二面角為.
20.是首項(xiàng)為、公比為的等比數(shù)列,
(1)當(dāng)時(shí),
兩式相減得
.
(2)
當(dāng)時(shí),,,對(duì),,而,
時(shí),成立,即.
當(dāng)時(shí),.
對(duì)遞增,時(shí),
時(shí),對(duì)成立,即,
綜上得,的取值范圍是.
21.(1)設(shè).
由拋物線定義,,
.
在上,,又
或舍去.
∴橢圓的方程為.
(2)∵直線的方程為為菱形,
,設(shè)直線的方程為
、在橢圓上,
.
設(shè),則.
.
的中點(diǎn)坐標(biāo)為,由為菱形可知,點(diǎn)在直線上,
∴直線的方程為,即.
22.(1),切線的議程為,即.
令得,令得,
,
.
(2)由及得,即.
于是
當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.
時(shí),時(shí),.
(3)
由得
當(dāng),即時(shí),,
當(dāng),即時(shí),
時(shí),取得最小值,最小值為.
由,得,此時(shí),最小值為.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com