(2)若的最大值為.解關(guān)于x的不等式. 查看更多

 

題目列表(包括答案和解析)

已知f(x)在x∈[a,b]上的最大值為M,最小值為m,給出下列五個(gè)命題:①若對(duì)任何x∈[a,b]都有p≤f(x),則p的取值范圍是(-∞,m];②若對(duì)任何x∈[a,b]都有p≤f(x),則p的取值范圍是(-∞,M];③若關(guān)于的方程p=f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,M];④若關(guān)于的不等式p≤f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,m];⑤若關(guān)于的不等式p≤f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,M];其中正確命題的個(gè)數(shù)為

[  ]

A.4

B.3

C.2

D.1

查看答案和解析>>

設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R有f(x+y)=f(x)+f(y)-1,當(dāng)x>0時(shí),f(x)>1,且f(3)=4;
(1)求f(1),f(4)的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若關(guān)于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整數(shù)為2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R有f(x+y)=f(x)+f(y)-1,當(dāng)x>0時(shí),f(x)>1,且f(3)=4;
(1)求f(1),f(4)的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若關(guān)于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整數(shù)為2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R有f(x+y)=f(x)+f(y)-1,當(dāng)x>0時(shí),f(x)>1,且f(3)=4;
(1)求f(1),f(4)的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若關(guān)于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整數(shù)為2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

設(shè)f(x)是定義在R上的函數(shù),對(duì)任意x,y∈R有f(x+y)=f(x)+f(y)-1,當(dāng)x>0時(shí),f(x)>1,且f(3)=4;
(1)求f(1),f(4)的值;
(2)判斷并證明f(x)的單調(diào)性;
(3)若關(guān)于x的不等式f(|x|x+a2x+a)<f(f(4)•x)的解集中最大的整數(shù)為2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

一,選擇題:           

 D C B CC,     CA BC B

二、填空題:

(11),     -3,         (12), 27      (13),

(14), .       (15),   -26,14,65

三、解答題:

  16,   由已知得;所以解集:;

17, (1)由題意=1又a>0,所以a=1.

      (2)g(x)=,當(dāng)時(shí),,無(wú)遞增區(qū)間;當(dāng)x<1時(shí),,它的遞增區(qū)間是

    綜上知:的單調(diào)遞增區(qū)間是

18, (1)當(dāng)0<t≤10時(shí),

是增函數(shù),且f(10)=240

當(dāng)20<t≤40時(shí),是減函數(shù),且f(20)=240  所以,講課開(kāi)始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。(3)當(dāng)0<t≤10時(shí),令,則t=4  當(dāng)20<t≤40時(shí),令,則t≈28.57 

則學(xué)生注意力在180以上所持續(xù)的時(shí)間28.57-4=24.57>24

從而教師可以第4分鐘至第28.57分鐘這個(gè)時(shí)間段內(nèi)將題講完。

19, (I)……1分

       根據(jù)題意,                                                 …………4分

       解得.                                                            …………7分

   (II)因?yàn)?sub>……7分

   (i)時(shí),函數(shù)無(wú)最大值,

           不合題意,舍去.                                                                  …………11分

   (ii)時(shí),根據(jù)題意得

          

       解之得                                                                      …………13分

       為正整數(shù),=3或4.                                                       …………14分

 

20. (1)當(dāng)x∈[-1,0)時(shí), f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

當(dāng)x∈[2k-1,2k),(k∈Z)時(shí),x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

當(dāng)x∈[2k,2k+1](k∈Z)時(shí),x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

故當(dāng)x∈[2k-1,2k+1](k∈Z)時(shí), f(x)的表達(dá)式為

f(x)=

loga[2-(x-2k)],x∈[2k,2k+1].

(2)∵f(x)是以2為周期的周期函數(shù),且為偶函數(shù),∴f(x)的最大值就是當(dāng)x∈[0,1]時(shí)f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是減函數(shù),

∴[f(x)]max= f(0)= =,∴a=4.

當(dāng)x∈[-1,1]時(shí),由f(x)>

    得

f(x)是以2為周期的周期函數(shù),

f(x)>的解集為{x|2k+-2<x<2k+2-,k∈Z

21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

又8x f(x)4(x2+1) 對(duì)恒成立,∴a=c=2   f(x)=2(x+1)2

(2)∵g(x)==,D={x?x-1  }

X1=,x2=,x3=-,x4=-1,∴M={,,-,-1}

 


同步練習(xí)冊(cè)答案