查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設數(shù)列滿足:,設,

若(2)中的滿足對任意不小于2的正整數(shù)恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于兩點,又過、作軌跡的切線、,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;

(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一,選擇題:           

 D C B CC,     CA BC B

二、填空題:

(11),     -3,         (12), 27      (13),

(14), .       (15),   -26,14,65

三、解答題:

  16,   由已知得;所以解集:;

17, (1)由題意=1又a>0,所以a=1.

      (2)g(x)=,當時,,無遞增區(qū)間;當x<1時,,它的遞增區(qū)間是

    綜上知:的單調(diào)遞增區(qū)間是

18, (1)當0<t≤10時,

是增函數(shù),且f(10)=240

當20<t≤40時,是減函數(shù),且f(20)=240  所以,講課開始10分鐘,學生的注意力最集中,能持續(xù)10分鐘。(3)當0<t≤10時,令,則t=4  當20<t≤40時,令,則t≈28.57 

則學生注意力在180以上所持續(xù)的時間28.57-4=24.57>24

從而教師可以第4分鐘至第28.57分鐘這個時間段內(nèi)將題講完。

19, (I)……1分

       根據(jù)題意,                                                 …………4分

       解得.                                                            …………7分

   (II)因為……7分

   (i)時,函數(shù)無最大值,

           不合題意,舍去.                                                                  …………11分

   (ii)時,根據(jù)題意得

          

       解之得                                                                      …………13分

       為正整數(shù),=3或4.                                                       …………14分

 

20. (1)當x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).

當x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].

當x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].

故當x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為

    f(x)=

    loga[2-(x-2k)],x∈[2k,2k+1].

    (2)∵f(x)是以2為周期的周期函數(shù),且為偶函數(shù),∴f(x)的最大值就是當x∈[0,1]時f(x)的最大值,∵a>1,∴f(x)=loga(2-x)在[0,1]上是減函數(shù),

    ∴[f(x)]max= f(0)= =,∴a=4.

    當x∈[-1,1]時,由f(x)>

        得

    f(x)是以2為周期的周期函數(shù),

    f(x)>的解集為{x|2k+-2<x<2k+2-,k∈Z

    21.(1)由8x f(x)4(x2+1),∴f(1)=8,f(-1)=0,∴b=4

    又8x f(x)4(x2+1) 對恒成立,∴a=c=2   f(x)=2(x+1)2

    (2)∵g(x)==,D={x?x-1  }

    X1=,x2=,x3=-,x4=-1,∴M={,,-,-1}

     


    同步練習冊答案
    • <samp id="km2as"><s id="km2as"></s></samp>