題目列表(包括答案和解析)
已知二次函數(shù)f(x)滿足f (x+1)-f (x)=2x且f (0)=1.
⑴求f (x)的解析式;
⑵在區(qū)間[-1,1]上,y=f (x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的范圍.
(12分)已知二次函數(shù)f(x)滿足f(x-3)=f(-x-3),且該函數(shù)的圖像與y軸交于點(0,-1),在x軸上截得的線段長為。
確定該二次函數(shù)的解析式;
當x∈[-6,-1]時,求f(x)值域。
已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)當x∈[-1,1]時,不等式:f(x)>2x+m恒成立,求實數(shù)m的范圍.
(3)設(shè)g(t)=f(2t+a),t∈[-1,1],求g(t)的最大值;
已知二次函數(shù)f(x)滿足:①在x=1時有極值;②圖象過點(0,-3),且在該點處的切線與直線2x+y=0平行.
⑴求f(x)的解析式;
⑵求函數(shù)g(x)=f(x2)的單調(diào)遞增區(qū)間.
一,選擇題:
D C B CC, CA BC B
二、填空題:
(11), -3, (12), 27 (13),
(14), . (15), -26,14,65
三、解答題:
16, 由已知得;所以解集:;
17, (1)由題意,=1又a>0,所以a=1.
(2)g(x)=,當時,=,無遞增區(qū)間;當x<1時,=,它的遞增區(qū)間是.
綜上知:的單調(diào)遞增區(qū)間是.
18, (1)當0<t≤10時,
是增函數(shù),且f(10)=240
當20<t≤40時,是減函數(shù),且f(20)=240 所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。(3)當0<t≤10時,令,則t=4 當20<t≤40時,令,則t≈28.57
則學(xué)生注意力在180以上所持續(xù)的時間28.57-4=24.57>24
從而教師可以第4分鐘至第28.57分鐘這個時間段內(nèi)將題講完。
19, (I)……1分
根據(jù)題意, …………4分
解得. …………7分
(II)因為……7分
(i)時,函數(shù)無最大值,
不合題意,舍去. …………11分
(ii)時,根據(jù)題意得
解之得 …………13分
為正整數(shù),=3或4. …………14分
20. (1)當x∈[-1,0)時, f(x)= f(-x)=loga[2-(-x)]=loga(2+x).
當x∈[2k-1,2k),(k∈Z)時,x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].
當x∈[2k,2k+1](k∈Z)時,x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].
故當x∈[2k-1,2k+1](k∈Z)時, f(x)的表達式為
|