題目列表(包括答案和解析)
在中,已知sinC=2sin(B+C)cosB,那么一定是
A.等腰直角三角形 B.等腰三角形 C.直角三角形 D.等邊三角形
A.等腰直角三角形
B.等腰三角形
C.直角三角形
D.等邊三角形
A.等腰直角三角形 B.等腰三角形
C.直角三角形 D.等邊三角形
A.等腰直角三角形 B.等腰三角形
C.直角三角形 D.等邊三角形
A.等腰直角三角形 B.等腰三角形
C.直角三角形 D.等邊三角形
一、選擇題(本大題共8小題,每小題5分,共40分)
1.D 2.C 3.B 4.B 5.D 6.D 7.A 8.C
二、填空題(本大題共6小題,每小題5分,共30分)
9.72 10. 11.1 , 12.f(x)=,3
13., 14.①②③④ , ①③②④
注:兩個空的填空題第一個空填對得2分,第二個空填對得3分.
三、解答題(本大題共6小題,共80分)
15.(本小題滿分13分)
解:設(shè)既會唱歌又會跳舞的有x人,則文娛隊中共有(7-x)人,那么只會一項的人數(shù)是
(7-2 x)人.
(I)∵,
∴.……………………………………3分
即.
∴.
∴x=2. ……………………………………5分
故文娛隊共有5人.……………………………………7分
(II) 的概率分布列為
0
1
2
P
,……………………………………9分
,……………………………………11分
∴ =1. …………………………13分
16.(本小題滿分13分)
解:(I)由,得
.……………………………………2分
當(dāng)x=1時,切線l的斜率為3,可得
當(dāng)時,有極值,則,可得
由①、②解得 a=2,b=-4.……………………………………5分
設(shè)切線l的方程為 .
由原點(diǎn)到切線l的距離為,
則.解得m=±1.
∵切線l不過第四象限,
∴m=1.……………………………………6分
由于l切點(diǎn)的橫坐標(biāo)為x=1,∴.
∴1+a+b+c=4.
∴c=5.…………………………………………………………………7分
(II)由(I)可得,
∴.……………………………………8分
令,得x=-2, .
x
[-3,-2)
-2
(-2, )
(,1]
+
0
-
0
+
f(x)
極大值
極小值
……………………………………11分
∴f(x)在x=-2處取得極大值f(-2)=13.
在處取得極小值=.
又f(-3)=8,f(1)=4.
∴f(x)在[-3,1]上的最大值為13,最小值為.……………………………………13分
17.(本小題滿分14分)
解法一:(I) ∵PC平面ABC,平面ABC,
∴PCAB.…………………………2分
∵CD平面PAB,平面PAB,
∴CDAB.…………………………4分
又,
∴AB平面PCB. …………………………5分
(II) 過點(diǎn)A作AF//BC,且AF=BC,連結(jié)PF,CF.
則為異面直線PA與BC所成的角.………6分
由(Ⅰ)可得AB⊥BC,
∴CFAF.
由三垂線定理,得PFAF.
則AF=CF=,PF=,
在中, tan∠PAF==,
∴異面直線PA與BC所成的角為.…………………………………9分
(III)取AP的中點(diǎn)E,連結(jié)CE、DE.
∵PC=AC=2,∴CE PA,CE=.
∵CD平面PAB,
由三垂線定理的逆定理,得 DE PA.
∴為二面角C-PA-B的平面角.…………………………………11分
由(I) AB平面PCB,又∵AB=BC,可求得BC=.
在中,PB=,
.
在中, sin∠CED=.
∴二面角C-PA-B的大小為arcsin.……14分
解法二:(I)同解法一.
(II) 由(I) AB平面PCB,∵PC=AC=2,
又∵AB=BC,可求得BC=.
以B為原點(diǎn),如圖建立坐標(biāo)系.
則A(0,,0),B(0,0,0),
C(,0,0),P(,0,2).
,.
…………………7分
則+0+0=2.
== .
∴異面直線AP與BC所成的角為.………………………10分
(III)設(shè)平面PAB的法向量為m= (x,y,z).
,,
則 即
解得 令= -1, 得 m= (,0,-1).
設(shè)平面PAC的法向量為n=().
,,
則 即
解得 令=1, 得 n= (1,1,0).……………………………12分
=.
∴二面角C-PA-B的大小為arccos.………………………………14分
18.(本小題滿分13分)
解:(I)設(shè)P(x,y),因?yàn)锳、B分別為直線和上的點(diǎn),故可設(shè)
,.
∵,
∴∴………………………4分
又,
∴.……………………………………5分
∴.
即曲線C的方程為.………………………………………6分
(II) 設(shè)N(s,t),M(x,y),則由,可得(x,y-16)= (s,t-16).
故,.……………………………………8分
∵M(jìn)、N在曲線C上,
∴……………………………………9分
消去s得 .
由題意知,且,
解得 .………………………………………………………11分
又 , ∴.
解得 ().
故實(shí)數(shù)的取值范圍是().………………………………13分
19.(本小題滿分13分)
解:(I)∵,,,
∴.
即.
又,可知對任何,,
所以.……………………………2分
∵,
∴是以為首項,公比為的等比數(shù)列.………4分
(II)由(I)可知= ().
∴.
.……………………………5分
當(dāng)n=7時,,;
當(dāng)n<7時,,;
當(dāng)n>7時,,.
∴當(dāng)n=7或n=8時,取最大值,最大值為.……8分
(III)由,得 (*)
依題意(*)式對任意恒成立,
①當(dāng)t=0時,(*)式顯然不成立,因此t=0不合題意.…………9分
、诋(dāng)t<0時,由,可知().
而當(dāng)m是偶數(shù)時,因此t<0不合題意.…………10分
、郛(dāng)t>0時,由(),
∴ ∴. ()……11分
設(shè) ()
∵ =,
∴.
∴的最大值為.
所以實(shí)數(shù)的取值范圍是.…………………………………13分
20.(本小題滿分14分)
解:(I) ∵x>0,∴
∴f(x)在(0,1)上為減函數(shù),在上是增函數(shù).
由0<a<b,且f(a)=f(b),
可得 0<a1<b和.
即.
∴2ab=a+b>.……………………………………3分
故,即ab>1.……………………………………4分
(II)不存在滿足條件的實(shí)數(shù)a,b.
若存在滿足條件的實(shí)數(shù)a,b,使得函數(shù)y=的定義域、值域都是
[a,b],則a>0.
① 當(dāng)時,在(0,1)上為減函數(shù).
故 即
解得 a=b.
故此時不存在適合條件的實(shí)數(shù)a,b.………………………………6分
② 當(dāng)時,在上是增函數(shù).
故 即
此時a,b是方程的根,此方程無實(shí)根.
故此時不存在適合條件的實(shí)數(shù)a,b.………………………………8分
③ 當(dāng),時,
由于,而,
故此時不存在適合條件的實(shí)數(shù)a,b.
綜上可知,不存在適合條件的實(shí)數(shù)a,b.………………………………10分
(III)若存在實(shí)數(shù)a,b(a<b),使得函數(shù)y=f(x)的定義域?yàn)閇a,b]時,值域?yàn)閇ma,mb].
則a>0,m>0.
① 當(dāng)時,由于f(x)在(0,1)上是減函數(shù),故.此時刻得a,b異號,不符合題意,所以a,b不存在.
② 當(dāng)或時,由(II)知0在值域內(nèi),值域不可能是[ma,mb],所以a,b不存在.
故只有.
∵在上是增函數(shù),
∴ 即
a, b是方程的兩個根.
即關(guān)于x的方程有兩個大于1的實(shí)根.……………………12分
設(shè)這兩個根為,.
則+=,?=.
∴ 即
解得 .
故m的取值范圍是.…………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com