題目列表(包括答案和解析)
x2 |
a2 |
y2 |
b2 |
y2 |
b2 |
x2 |
c2 |
π |
6 |
A、5,3 | ||||
B、
| ||||
C、
| ||||
D、5,4 |
已知是橢圓的左焦點(diǎn),是橢圓短軸上的一個(gè)頂點(diǎn),橢圓的離心率為,點(diǎn)在軸上,,三點(diǎn)確定的圓恰好與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過作斜率為的直線交橢圓于兩點(diǎn),為線段的中點(diǎn),設(shè)為橢圓中心,射線交橢圓于點(diǎn),若,若存在求的值,若不存在則說明理由.
1.B 2.C 3.B 4.C 5.B 6.B 7.C 8.B 9.C 10.B
11.C 12.D
【解析】
3.當(dāng)時(shí),函數(shù)在上,恒成立即在上恒成立,可得
當(dāng)時(shí),函數(shù)在上,恒成立
即在上恒成立
可得,對(duì)于任意恒成立
所以,綜上得.
4.解法一:聯(lián)立,得.
方程總有解,需恒成立
即恒成立,得恒成立
;又
的取值范圍為.
解法二:數(shù)形結(jié)合,因?yàn)橹本恒過定點(diǎn)(0,1),要使直線與橢圓總有交點(diǎn)當(dāng)日僅當(dāng)點(diǎn)(0,1)在橢圓上或橢圓內(nèi),即
又
的取值范圍為.
5.
7.展開式前三項(xiàng)的系數(shù)滿足可解得,或(舍去).從而可知有理項(xiàng)為,故C正確.
8.,欲使為奇函數(shù),須使,觀察可知,、不符合要求,若,則,其在上是減函數(shù),故B正確
當(dāng)時(shí),,其在上是增函數(shù),不符合要求.
9.等價(jià)于
畫圖可知,故.
10.如圖乙所示.設(shè),點(diǎn)到直線的距離為,則由拋物線定義得,
又由點(diǎn)在橢圓上,及橢圓第一定義得
由橢圓第二定義得,解之得.
11.從52張牌中任意取13張牌的全部取法為;缺少某一種花色的取法為,缺少兩種花色的取法為,缺少三種花色的取法為,根據(jù)容斥原理可知四種花色齊全的取法為.
12.設(shè)中點(diǎn)為,連.由已知得平面,作,交的延長(zhǎng)線于點(diǎn),連.則為所求,設(shè),則,在
中可求出,則.
二、填空題
13..
提示:可以用換元法,原不等式為也可以用數(shù)形結(jié)合法.
令,在同一坐標(biāo)系內(nèi)分別畫出這兩個(gè)函數(shù)的圖象,由圖直觀得解集.
14.12.提示:經(jīng)判斷,為截面團(tuán)的直徑,再由巳知可求出球的半徑為.
15..提示:由于得
解得,又
所以,當(dāng)時(shí),取得最小值.
16.①②④
三、解答題
17.懈:
,由正弦定理得,
又,
,化簡(jiǎn)得
為等邊三角形.
說明;本題是向量和三角相結(jié)合的題目,既考查了向量的基本知識(shí),又考查了三角的有關(guān)知識(shí),三角形的形狀既可由角確定。也可由邊確定,因此既可從角入手,把邊化為角;也可從邊入手,把角化為邊來判斷三角形的形狀.
18.解:(1)在第一次更換燈泡工作中,不需要更換燈泡的概率為需要更換2只燈泡的概率為.
(2)對(duì)該盞燈來說,在第1、2次都更換了燈泡的概率為,在第一次未更換燈泡而在第二次需要更換燈泡的概率為,故所求的概率為.
(3)當(dāng)時(shí),
由(2)知第二次燈泡更換工作中,某盞燈更換的概率
故至少換4只燈泡的概率為
19.解:]
因?yàn)楹瘮?shù)在處的切線斜率為
所以
即 ①
又
得 ②
(1)函數(shù)在時(shí)有極值
③
解式①②③得
所以.
(2)因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以導(dǎo)函數(shù)在區(qū)間的值恒大于或等于零.
則
得,所以實(shí)數(shù)的取值范圍為.
20.解:(1)連接因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6556977573ab79b844c6cb2d38dd862f.zip/73589.files/image231.gif" >平面,平面平面
所以;又為的中點(diǎn),故為的中點(diǎn)
底面
為與底面所成的角
在中,
所以與底面所成的角為45°.
(2)解法一;如圖建立直角坐標(biāo)系
則,
設(shè)點(diǎn)的坐標(biāo)為
故
點(diǎn)的坐標(biāo)為
故.
解法二:平面
,又
平面
在正方形中,
.
21.解:(1)設(shè)點(diǎn)、的坐標(biāo)分別為、,點(diǎn)的坐標(biāo)為
當(dāng)時(shí),設(shè)直線的斜率為
直線過點(diǎn)
的方程為
又已知 ①
②
③
④
∴式①一式②得
⑤
③式+式④得
⑥
∴由式⑤、式⑥及
得點(diǎn)的坐標(biāo)滿足方程
⑦
當(dāng)時(shí),不存在,此時(shí)平行于軸,因此的中點(diǎn)一定落在軸上,即的坐標(biāo)為,顯然點(diǎn)(,0)滿足方程⑦
綜上,點(diǎn)的坐標(biāo)滿足方程
設(shè)方程⑦所表示的曲線為
則由,
得
因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/6556977573ab79b844c6cb2d38dd862f.zip/73589.files/image674.gif" >,又已知,
所以當(dāng)時(shí). ,曲線與橢圓有且只有一個(gè)交點(diǎn),
當(dāng)時(shí),,曲線與橢圓沒有交點(diǎn),因?yàn)椋?,0)在橢圓內(nèi),又在曲線上,所以曲線在橢圓內(nèi),故點(diǎn)的軌跡方程為
(2)由解得曲線與軸交于點(diǎn)(0,0),(0,)
由解得曲線與軸交于點(diǎn)(0,0).(,0)
當(dāng),即點(diǎn)為原點(diǎn)時(shí),(,0)、(0,)與(0.0)重合,曲線與坐標(biāo)軸只有一個(gè)交點(diǎn)(0,0).
當(dāng),且,即點(diǎn)不在橢圓外且在除去原點(diǎn)的軸上時(shí),曲線與坐標(biāo)軸有兩個(gè)交點(diǎn)(0,)與(0,0),同理,當(dāng)且時(shí),曲線與坐標(biāo)軸有兩個(gè)交點(diǎn)(,o)、(0,0).
當(dāng),且時(shí),即點(diǎn)不在橢圓且不在坐標(biāo)軸上時(shí),曲線與坐標(biāo)軸有三個(gè)交點(diǎn)(,0)、(0,)與(0,0).
22.(1)解:,又
是以首項(xiàng)為,公比為的等比數(shù)列.
.
(2)證明:設(shè)數(shù)列的公比為,則條件等式可化為:
數(shù)列為等差數(shù)列,
(3)證明:由題意知
①
式①得
②
式①-式②得
.
www.ks5u.com
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com