(1)求角的大小, 查看更多

 

題目列表(包括答案和解析)

某小區(qū)規(guī)劃一塊周長為2a(a為正常數)的矩形停車場,其中如圖所示的直角三角形ADP內為綠化區(qū)域.且∠PAC=∠CAB.設矩形的長AB=x,AB>AD
(1)求線段DP的長關于x的函數l(x)表達式并指出定義域;
(2)應如何規(guī)劃矩形的長AB,使得綠化面積最大?

查看答案和解析>>

(本小題12分)設函數.

(1)求函數的最大值和最小正周期;

設A,B,C為的三個內角,若且C為銳角,求.

查看答案和解析>>

(意大利餡餅問題)山姆的意大利餡餅屋中設有一個投鏢靶 該靶為正方形板.邊長為18厘米,掛于前門附近的墻上,顧客花兩角伍分的硬幣便可投一鏢并可有機會贏得一種意大利餡餅中的一個,投鏢靶中畫有三個同心圓,圓心在靶的中心,當投鏢擊中半徑為1厘米的最內層圓域時.可得到一個大餡餅;當擊中半徑為1厘米到2厘米之間的環(huán)域時,可得到一個中餡餅;如果擊中半徑為2厘米到3厘米之間的環(huán)域時,可得到一個小餡餅,如果擊中靶上的其他部分,則得不到諂餅,我們假設每一個顧客都能投鏢中靶,并假設每個圓的周邊線沒有寬度,即每個投鏢不會擊中線上,試求一顧客將嬴得:

(a)一張大餡餅,

(b)一張中餡餅,

(c)一張小餡餅,

(d)沒得到餡餅的概率

查看答案和解析>>

(本小題滿分12分)

有一塊邊長為6m的正方形鋼板,將其四個角各截去一個邊長為x的小正方形,然后焊接成一個無蓋的蓄水池。

(Ⅰ)寫出以x為自變量的容積V的函數解析式V(x),并求函數V(x)的定義域;

(Ⅱ)指出函數V(x)的單調區(qū)間;

(Ⅲ)蓄水池的底邊為多少時,蓄水池的容積最大?最大容積是多少?

查看答案和解析>>


(本小題滿分12分) 已知向量,,.
(1)若求向量的夾角;
(2)當時,求函數的最大值。

查看答案和解析>>

1.C       2.C       3.B       4.A      5.C       6.C       7.D      8.C       9.D      10.B 學科網(Zxxk.Com)

1l.B      12.A學科網(Zxxk.Com)

2.解析:學科網(Zxxk.Com)

       ,∴選C.學科網(Zxxk.Com)

3.解析:是增函數  學科網(Zxxk.Com)

       故,即學科網(Zxxk.Com)

       又學科網(Zxxk.Com)

       ,故選B.學科網(Zxxk.Com)

4.解析:如圖作出可行域,作直線,平移直線位置,使其經過點.此時目標函數取得最大值(注意反號)學科網(Zxxk.Com)

學科網(Zxxk.Com)

學科網(Zxxk.Com)

       ,故選A學科網(Zxxk.Com)

5.解析:設有人投中為事件,則,學科網(Zxxk.Com)

       故選C.

6.解析:展開式中通項;

      

       由,得,故選C.

7.解析:

       由

,故選D.

8.略

9.解析:由得準線方程,雙曲線準線方程為

       ,解得,

       ,故選D.

10.解析:設正四面體的棱長為2,取中點為,連接,則所成的角,在

,故選B.

11.解析:

由題意,則,故選B.

12.解析:由已知

       為球的直么

       ,又,

       設,則

       ,

      

       又由,解得

       ,故選A.

另法:將四面體置于正方休中.

       正方體的對角線長為球的直徑,由此得,然后可得

二、填空題

13.3;解析:上的投影是

14.(0.2);解析:由,解得

15.

解析:,

      

       由余弦定理為鈍角

       ,即

       解得

16.②③;

解析:容易知命題①是錯的,命題②、③都是對的,對于命題④我們考查如圖所示的正方體,政棱長為,顯然為平面內兩條距離為的平行直線,它們在底面內的射影、仍為兩條距離為的平行直線.但兩平面卻是相交的.

三、

17.解:(1),

              ,

,故

       (2)

              由

邊上的高為。則

18.(1)設甲、乙兩人同時參加災區(qū)服務為事件,則

(2)記甲、乙兩人同時參加同一災區(qū)服務為事件,那么

19.解:

      

(1)平面

           ∵二面角為直二面角,且

              平面              平面

(2)(法一)連接交于點,連接是邊長為2的正方形,                 

平面,由三垂線定理逆定理得

是二面角的平面角

由(1)平面,

中,

∴在中,

故二面角等于

(2)(法二)利用向量法,如圖以之中點為坐標原點建立空間坐標系,則

             

             

              ,

              設平面的法向量分別為,則由

              ,而平面的一個法向理

             

              故所求二面角等于

20.解:(1)由題設,即

              易知是首項為,公差為2的等差數列,

           ∴通項公式為

    (2)由題設,,得是以公比為的等比數列.

       

        由

 

21.解:(1)由題意,由拋物線定義可求得曲線的方程為

(2)證明:設點、的坐標分別為

             若直線有斜率時,其坐標滿足下列方程組:

              ,        

              若沒有斜率時,方程為

              又

             

              ;又,

                         

22.(1)解:方程可化為

時,,又,于是,解得,故

       (2)解:設為曲線上任一點,由知曲線在點處的切線方程為,即

              令,得,從而得切線與直線的交點坐標為

,得,從而得切線與直線的交點坐標為.所以點處的切線與直線所圍成的三角形面積為.故曲線上任一點處的切線與直線所圍成的三角形的面積為定值,此定值為6.

 

 

 


同步練習冊答案