題目列表(包括答案和解析)
C.選修4-4:坐標系與參數(shù)方程
在極坐標系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標方程;(2)當時,求直線與圓O公共點的一個極坐標.
D.選修4-5:不等式證明選講
對于任意實數(shù)和,不等式恒成立,試求實數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯;+==≥4,故A錯;由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯.故選C.
.定義域為R的函數(shù)滿足,且當時,,則當時,的最小值為( )
(A) (B) (C) (D)
.過點作圓的弦,其中弦長為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題
1―10 ACBCB DBCDD
二、填空題
11. 12. 13.―3 14.
15.2 16. 17.<
三、解答題:
18.解:(I)
(II)由于區(qū)間的長度是為,為半個周期。
又分別取到函數(shù)的最小值
所以函數(shù)上的值域為。……14分
19.解:(Ⅰ)證明:連接BD,設AC與BD相交于點F.
因為四邊形ABCD是菱形,所以AC⊥BD.……………………2分
又因為PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.………………4分
而AC∩BD=F,所以AC⊥平面PDB.
E為PB上任意一點,DE平面PBD,所以AC⊥DE.……………………6分
(Ⅱ)連EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.
S△ACE =AC?EF,在△ACE面積最小時,EF最小,則EF⊥PB.
S△ACE=9,×6×EF=9,解得EF=3. …………………8分
由PB⊥EF且PB⊥AC得PB⊥平面AEC,則PB⊥EC,
又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB!10分
作GH//CE交PB于點G,則GH⊥平面PAB,
所以∠GEH就是EG與平面PAB所成角。 ………………12分
在直角三角形CEB中,BC=6,
|