題目列表(包括答案和解析)
男 | 女 | 總計 | |
走天橋 | 40 | 20 | 60 |
走斑馬線 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
P(K2≥k) | 0.05 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
110×(40×30-20×20) |
60×50×60×50 |
設(shè)函數(shù),則滿足方程根的個數(shù)是( )
A.1 個 B.2 個 C.3 個 D.無數(shù)個
第Ⅱ卷 非選擇題(共100分)
(全國Ⅱ卷文1)若且是,則是( )
A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角
(全國Ⅱ卷文1)若且是,則是( )
A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角
(江西卷理1)在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
一、選擇題
1―10 ACBCB DBCDD
二、填空題
11. 12. 13.―3 14.
15.2 16. 17.<
三、解答題:
18.解:(I)
(II)由于區(qū)間的長度是為,為半個周期。
又分別取到函數(shù)的最小值
所以函數(shù)上的值域為!14分
19.解:(Ⅰ)證明:連接BD,設(shè)AC與BD相交于點(diǎn)F.
因為四邊形ABCD是菱形,所以AC⊥BD.……………………2分
又因為PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.………………4分
而AC∩BD=F,所以AC⊥平面PDB.
E為PB上任意一點(diǎn),DE平面PBD,所以AC⊥DE.……………………6分
(Ⅱ)連EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.
S△ACE =AC?EF,在△ACE面積最小時,EF最小,則EF⊥PB.
S△ACE=9,×6×EF=9,解得EF=3. …………………8分
由PB⊥EF且PB⊥AC得PB⊥平面AEC,則PB⊥EC,
又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB。………10分
作GH//CE交PB于點(diǎn)G,則GH⊥平面PAB,
所以∠GEH就是EG與平面PAB所成角。 ………………12分
在直角三角形CEB中,BC=6,
|