題目列表(包括答案和解析)
在等腰直角三角形ABC中,在斜邊AB上任取一點M,求AM小于AC的概率。
在等比數(shù)列中,,前項和為,若數(shù)列也是等比數(shù)列, 則等于( )
A、 B、 C、 D、。
在等式cos2x=2cos2x-1的兩邊對x求導(dǎo)(cos2x)′=(2cos2x-1)′。由求導(dǎo)法則得(-sin2x)·2=4cosx·(-sinx),化簡后得等式sin2x=2sinxcosx。
(1)利用上述想法(或者其他方法),試由等式(x∈R,整數(shù)n≥2)證明:。
(2)對于整數(shù),n≥3,求證:
(i);
(ii);
(iii)。
一、選擇題
1―10 ACBCB DBCDD
二、填空題
11. 12. 13.―3 14.
15.2 16. 17.<
三、解答題:
18.解:(I)
(II)由于區(qū)間的長度是為,為半個周期。
又分別取到函數(shù)的最小值
所以函數(shù)上的值域為。……14分
19.解:(Ⅰ)證明:連接BD,設(shè)AC與BD相交于點F.
因為四邊形ABCD是菱形,所以AC⊥BD.……………………2分
又因為PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.………………4分
而AC∩BD=F,所以AC⊥平面PDB.
E為PB上任意一點,DE平面PBD,所以AC⊥DE.……………………6分
(Ⅱ)連EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.
S△ACE =AC?EF,在△ACE面積最小時,EF最小,則EF⊥PB.
S△ACE=9,×6×EF=9,解得EF=3. …………………8分
由PB⊥EF且PB⊥AC得PB⊥平面AEC,則PB⊥EC,
又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB!10分
作GH//CE交PB于點G,則GH⊥平面PAB,
所以∠GEH就是EG與平面PAB所成角。 ………………12分
在直角三角形CEB中,BC=6,
|