題目列表(包括答案和解析)
(本題滿分14分)
已知實數(shù),曲線與直線的交點為(異于原點),在曲線 上取一點,過點作平行于軸,交直線于點,過點作平行于軸,交曲線于點,接著過點作平行于軸,交直線于點,過點作平行于軸,交曲線于點,如此下去,可以得到點,,…,,… . 設(shè)點的坐標(biāo)為,.
(Ⅰ)試用表示,并證明;
(Ⅱ)試證明,且();
(Ⅲ)當(dāng)時,求證: ().(本題滿分14分)
已知函數(shù)圖象上一點處的切線方程為.
(Ⅰ)求的值;
(Ⅱ)若方程在內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));
(Ⅲ)令,若的圖象與軸交于,(其中),的中點為,求證:在處的導(dǎo)數(shù).
(本題滿分14分)
已知曲線方程為,過原點O作曲線的切線
(1)求的方程;
(2)求曲線,及軸圍成的圖形面積S;
(3)試比較與的大小,并說明理由。(本題滿分14分)
已知中心在原點,對稱軸為坐標(biāo)軸的橢圓,左焦點,一個頂點坐標(biāo)為(0,1)
(1)求橢圓方程;
(2)直線過橢圓的右焦點交橢圓于A、B兩點,當(dāng)△AOB面積最大時,求直線方程。
(本題滿分14分)
如圖,在直三棱柱中,,,求二面角的大小。
一、選擇題
1―10 ACBCB DBCDD
二、填空題
11. 12. 13.―3 14.
15.2 16. 17.<
三、解答題:
18.解:(I)
(II)由于區(qū)間的長度是為,為半個周期。
又分別取到函數(shù)的最小值
所以函數(shù)上的值域為!14分
19.解:(Ⅰ)證明:連接BD,設(shè)AC與BD相交于點F.
因為四邊形ABCD是菱形,所以AC⊥BD.……………………2分
又因為PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.………………4分
而AC∩BD=F,所以AC⊥平面PDB.
E為PB上任意一點,DE平面PBD,所以AC⊥DE.……………………6分
(Ⅱ)連EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.
S△ACE =AC?EF,在△ACE面積最小時,EF最小,則EF⊥PB.
S△ACE=9,×6×EF=9,解得EF=3. …………………8分
由PB⊥EF且PB⊥AC得PB⊥平面AEC,則PB⊥EC,
又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB!10分
作GH//CE交PB于點G,則GH⊥平面PAB,
所以∠GEH就是EG與平面PAB所成角。 ………………12分
在直角三角形CEB中,BC=6,
|