題目列表(包括答案和解析)
已知
(I)求數(shù)列{}的通項(xiàng)公式;
(II)數(shù)列{}的首項(xiàng)b1=1,前n項(xiàng)和為Tn,且,求數(shù)列{}的通項(xiàng)公式bn.
已知,
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列成等差數(shù)列,求Tn.
已知,
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列成等差數(shù)列,求Tn.
在數(shù)列
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè);
(III)設(shè),是否存在整數(shù)m,使得對任意成立?若存在,求出m的最大值;若不存在,請說明理由.
一、選擇題
1―10 ACBCB DBCDD
二、填空題
11. 12. 13.―3 14.
15.2 16. 17.<
三、解答題:
18.解:(I)
(II)由于區(qū)間的長度是為,為半個(gè)周期。
又分別取到函數(shù)的最小值
所以函數(shù)上的值域?yàn)?sub>。……14分
19.解:(Ⅰ)證明:連接BD,設(shè)AC與BD相交于點(diǎn)F.
因?yàn)樗倪呅蜛BCD是菱形,所以AC⊥BD.……………………2分
又因?yàn)镻D⊥平面ABCD,AC平面ABCD,所以PD⊥AC.………………4分
而AC∩BD=F,所以AC⊥平面PDB.
E為PB上任意一點(diǎn),DE平面PBD,所以AC⊥DE.……………………6分
(Ⅱ)連EF.由(Ⅰ),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF.
S△ACE =AC?EF,在△ACE面積最小時(shí),EF最小,則EF⊥PB.
S△ACE=9,×6×EF=9,解得EF=3. …………………8分
由PB⊥EF且PB⊥AC得PB⊥平面AEC,則PB⊥EC,
又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB!10分
作GH//CE交PB于點(diǎn)G,則GH⊥平面PAB,
所以∠GEH就是EG與平面PAB所成角。 ………………12分
在直角三角形CEB中,BC=6,
|