5.已知a.m.n是直線.α.β.γ是平面.給出下列五個命題: 查看更多

 

題目列表(包括答案和解析)

已知a,m,n是直線,α,β,γ是平面,給出下列五個命題:①若α⊥γ,β⊥γ,則α∥β、谌鬽α,nα,m∥α,n∥β,則α∥β、廴籀痢桅,β∥γ,則α∥β ④若β⊥α,a⊥α,則a∥β ⑤若α內有不共線的三點到平面β的距離相等,則α∥β,其中正確命題的個數有

[  ]

A.0個

B.1個

C.2個

D.3個

查看答案和解析>>

6、已知l、m、n為直線,α、β、γ為平面,給出下列命題:①若l⊥α,m⊥α則l∥m;②若m?β,n是l在平面β內的射影,且m⊥l,則m⊥n;③若m?α且n∥m,則n∥α;④若α⊥γ且β⊥γ,則α∥β;其中為真命題的有( 。

查看答案和解析>>

已知l、m、n為直線,α、β、γ為平面,給出下列命題:①若l⊥α,m⊥α則l∥m;②若m?β,n是l在平面β內的射影,且m⊥l,則m⊥n;③若m?α且n∥m,則n∥α;④若α⊥γ且β⊥γ,則α∥β;其中為真命題的有( )
A.①②
B.②③
C.①②③
D.①③④

查看答案和解析>>

已知l、m、n為直線,α、β、γ為平面,給出下列命題:①若l⊥α,m⊥α則l∥m;②若m?β,n是l在平面β內的射影,且m⊥l,則m⊥n;③若m?α且n∥m,則n∥α;④若α⊥γ且β⊥γ,則α∥β;其中為真命題的有( )
A.①②
B.②③
C.①②③
D.①③④

查看答案和解析>>

已知l、m、n為直線,α、β、γ為平面,給出下列命題:①若l⊥α,m⊥α則l∥m;②若m?β,n是l在平面β內的射影,且m⊥l,則m⊥n;③若m?α且n∥m,則n∥α;④若α⊥γ且β⊥γ,則α∥β;其中為真命題的有


  1. A.
    ①②
  2. B.
    ②③
  3. C.
    ①②③
  4. D.
    ①③④

查看答案和解析>>

一、選擇題(本大題共12小題,每題5分,共60分,在每小題的選項中,只有一項符合)

1

2

3

4

5

6

7

8

9

10

11

12

C

A

C

B

B

A

D

B

D

A

C

理D

文C

二、填空題:本大題共4小題,每小題4分,共16分

13.(?∞,?2)    14.(理):15    文:(-1,0)∪(0,1)

15.2               16.①②③④

三、解答題:本大題共6小題,共74分,解答應寫出文字說明,證明過程或演算步驟。

17.(12分)

   (1)

             =……………………………………2分

             =………………………………………………4分

………………………………6分

得f(x)的減區(qū)間:………………8分

   (2)f(x平移后:

        …………………………………………10分

要使g(x)為偶函數,則

100080

18.(12分)

   (1)馬琳勝出有兩種情況,3:1或3:2

        ………………………… 6分

   (2)

       

分布列:    3      4     5

      P              ……………………10分

E= ………………………………………………12分

文科:前3次中獎的概率

……………………6分

(2)在本次活動中未中獎的概率為

  (1-p)10…………………………………………………………8分

恰在第10次中獎的概率為

(1-p)9p………………………………………………………………10分

………………………………12分

19.(12分)

  • <label id="qcesn"><tfoot id="qcesn"><track id="qcesn"></track></tfoot></label><label id="qcesn"></label>

    EM是平行四邊形 …… 3分

    平面PAB ……5分

    (2)過Q做QF//PA  交AD于F

     QF⊥平面ABCD

    作FH⊥AC  H為垂足

    ∠QHF是Q―AC―D的平面角……8分

    設AF=x  則

    FD=2-x

    在Rt△QFH中,

    ……10分

    ∴Q為PD中點……12分

    解法2

    (1)如圖所示A(0,0,0)  B(1,0,0)C(1,1,0)D(0,2,0) p(0,0,1)

     M(0,1,……………………………………3分

    是平面PAB的法向量  

        故MC//平面PAB…………5分

    (2)設

    是平面QAC的法向量

    ………………………………9分

    為平面ACD的法向量,于是

    ∴Q為PD的中點…………………………………………12分

    20.經分析可知第n行有3n-2個數,                  理科        文科

    前n-1行有                    

    第n行的第1個數是                   2分        4分

    (1)第10行第10個數是127                      4分         7分

    (2)表中第37行、38行的第1個數分別為1927,2036

    所以2008是此表中的第37行

    第2008-1927+1=82個數                         8分         14分

    (3)不存在

    第n行第1個數是

     第n+2行最后一個數是 

                         =

    這3行共有  (3n-2)+[3(n+1)-2]+[3(n+2)-2]

              =9n+3  個數                                   10分

    這3行沒有數之和

                              12分

    此方程無正整數解.

    21.(理科14分,文科12分)                                            理科 文科

    (1)P(0,b)  M(a,0) 沒N(xy) 由

         由                  ②

    將②代入①得曲線C的軌跡方程為 y2 = 4x                              5分 6分

    (2)點F′(-1,0)  ,設直線ly = k (x+1) 代入y2 = 4x

    k2x2+2 (k2-2)x+k2=0

                                                 7分 8分

    設A(x1,y1) B(x2,y2) D(x0y0) 則

    故直線DE方程為

    令y=0 得   

    的取值范圍是(3,+∞)                                   10分 12分

    (3)設點Q的坐標為(-1,t),過點Q的切線為:yt = k (x+1)

    代入y2 = 4x   消去 x整理得ky2-4y+4t+4k=0                            12分

    △=16-16k (t+k)    令

    兩切線l1,l2 的斜率k1,k2是此方程的兩根

    k1?k2=-1    故l1l2                                          14分

    22.文科:依題意                         2分

                                                     4分

              若f (x)在(-1,0)上是增函數,則在(-1,1)上

              ∵的圖象是開口向下的拋物線                            6分

    解之得 t≥5                                                 12分

    理科:

    (1)

                                            2分

    x        0      (0,)         (,1)    1

                   ―         0        +

        -                  -4                -3

    所以    是減函數

            是增函數                                   4分

    的值域為[-4,-3]                              6分

    (2)

    ∵a≥1 當

    時  g (x)↓

      時  g (x)∈[g (1),g (0)]=[1-2a3a2,-2a]                8分

    任給x1∈[0,1]  f (x1) ∈[-4,-3]

    存在x0∈[0,1]  使得  g (x0) = f (x1)

    則:[1-2a3a2,-2a]=[-4,-3]                                 10分

    即 

    又a≥1  故a的取值范圍為[1,]                                

     


    同步練習冊答案

      <li id="qcesn"><tfoot id="qcesn"></tfoot></li>