某工廠在試驗(yàn)階段大量生產(chǎn)一種零件.這種零件有.兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè).設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若有且僅有一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為.至少一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為.按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.(Ⅰ)求一個(gè)零件經(jīng)過(guò)檢測(cè)為合格品的概率是多少?(Ⅱ)任意依次抽出5個(gè)零件進(jìn)行檢測(cè).求其中至多3個(gè)零件是合格品的概率是多少? 查看更多

 

題目列表(包括答案和解析)

某工廠在試驗(yàn)階段大量生產(chǎn)一種零件.這種零件有A、B兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若A項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
3
4
,有且僅有一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
5
12
.按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.
(Ⅰ)求一個(gè)零件經(jīng)過(guò)檢測(cè)為合格品的概率;
(Ⅱ)任意依次抽出5個(gè)零件進(jìn)行檢測(cè),求其中至多3個(gè)零件是合格品的概率;
(Ⅲ)任意依次抽取該種零件4個(gè),設(shè)ξ表示其中合格品的個(gè)數(shù),求Eξ與Dξ.

查看答案和解析>>

某工廠在試驗(yàn)階段大量生產(chǎn)一種零件.這種零件有A、B兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)兩項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若有且僅有一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
5
12
,至少一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
11
12
.按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.
(1)求一個(gè)零件經(jīng)過(guò)檢測(cè)為合格品的概率是多少?
(2)任意依次抽出4個(gè)零件進(jìn)行檢測(cè),設(shè)ξ表示其中合格品的個(gè)數(shù).
①求其中至多2個(gè)零件是合格品的概率是多少?
②求ξ的均值Eξ和方差Dξ.

查看答案和解析>>

某工廠在試驗(yàn)階段大量生產(chǎn)一種零件,這種零件有A,B兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若A項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
3
4
,有且僅有一項(xiàng)指標(biāo)達(dá)標(biāo)的概率為
5
12
.按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品,則一個(gè)零件經(jīng)過(guò)檢測(cè)為合格品的概率是
 

查看答案和解析>>

某工廠在試驗(yàn)階段大量生產(chǎn)一種零件.這種零件有A、B兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若有且僅有一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
5
12
,至少一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
11
12
.按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.
(1)求一個(gè)零件經(jīng)過(guò)檢測(cè)為合格品的概率是多少?
(2)任意依次抽出5個(gè)零件進(jìn)行檢測(cè),求其中至多3個(gè)零件是合格品的概率是多少?

查看答案和解析>>

某工廠在試驗(yàn)階段大量生產(chǎn)一種零件,這種零件有A、B兩項(xiàng)技術(shù)指標(biāo)需要檢測(cè),設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若有且僅有一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
5
12
,至少一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
11
12
.按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.
(Ⅰ)求一個(gè)零件經(jīng)過(guò)檢測(cè)為合格品的概率是多少?
(Ⅱ)任意依次抽取該種零件4個(gè),設(shè)ξ表示其中合格品的個(gè)數(shù),求ξ的分布列及數(shù)學(xué)期望Eξ.

查看答案和解析>>

一、選擇題1―5 BDADA  6―12 ACDCB  BB

二、填空題13.2  14.    15.  16.①③④

 三、17.解:在中  

                                                   2分

    4分

      ….6分

   (2)=……..10分

18.解:(1)在正方體中,、、分別為、、中點(diǎn)   即平面

   到平面的距離即到平面的距離.

    在平面中,連結(jié)

之距為, 因此到平面的距離為………6分

   (2)在四面體中,

    又底面三角形是正三角形,

    設(shè)之距為

      

    故與平面所成角的正弦值   …………12分

19.解:(Ⅰ)設(shè)、兩項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率分別為、

由題意得:          ……………………2分      

   解得:,∴.   即,一個(gè)零件經(jīng)過(guò)檢測(cè)為合格品的概率為………………………………..             3分                       

(Ⅱ)任意抽出5個(gè)零件進(jìn)行檢查,其中至多3個(gè)零件是合格品的概率為

 ……………………………….8分                               

(Ⅲ)依題意知~B(4,),           …………12分

20.解(1)

!2分

…………………………………………………………….4分

為等差數(shù)列                                        6分

   (2)

 ………………10分

21.解:(1)

                     2分

x

(-,-3)

-3

(-3,1)

1

(1,+

+

0

-

0

+

(x)

極大值

極小值

                     6分

   (2)

 

                                     9分

3恒成立

3恒成立

恒成立…………………………..10分

                                    12分

22.解法一:(Ⅰ)設(shè)點(diǎn),則,由得:

,化簡(jiǎn)得.……………….3分

(Ⅱ)(1)設(shè)直線的方程為:

設(shè),,又,

聯(lián)立方程組,消去得:,

……………………………………6分

,得:

,整理得:

,,

.……………………………………………………………9分

解法二:(Ⅰ)由得:

,

,

所以點(diǎn)的軌跡是拋物線,由題意,軌跡的方程為:

(Ⅱ)(1)由已知,,得

則:.…………①

過(guò)點(diǎn)分別作準(zhǔn)線的垂線,垂足分別為,

則有:.…………②

,

所以點(diǎn)的軌跡是拋物線,由題意,軌跡的方程為:

(Ⅱ)(1)由已知,得

則:.…………①

過(guò)點(diǎn)分別作準(zhǔn)線的垂線,垂足分別為,

則有:.…………②

由①②得:,即

(Ⅱ)(2)解:由解法一,

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,所以最小值為.…………..12分


同步練習(xí)冊(cè)答案