(B)(C)4 (D)8 查看更多

 

題目列表(包括答案和解析)

(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應(yīng)的一個特征向量
e1
=
1
1
,并且矩陣M對應(yīng)的變換將點(-1,2)變換成(3,0),求矩陣M.
(2)選修4-4:坐標系與參數(shù)方程
過點M(3,4),傾斜角為
π
6
的直線l與圓C:
x=2+5cosθ
y=1+5sinθ
(θ為參數(shù))相交于A、B兩點,試確定|MA|•|MB|的值.
(3)選修4-5:不等式選講
已知實數(shù)a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

查看答案和解析>>

(理)某娛樂中心有如下摸獎活動:拿8個白球和8個黑球放在一盒中,規(guī)定:凡摸獎?wù),每人每次交費1元,每次從盒中摸出5個球,中獎情況為:摸出5個白球中20元,摸出4個白球1個黑球中2元,摸出3個白球2個黑球中價值為0.5元的紀念品1件,其他情況無任何獎勵.若有1560人次摸獎,不計其他支出,用概率估計該中心收入錢數(shù)為( 。
A、120元B、480元C、980元D、148元

查看答案和解析>>

(2012•增城市模擬)已知集合P={x|2≤x<4},集合Q={x|3x-7≥8-2x},則P∩Q=(  )

查看答案和解析>>

(x
x
+
1
x4
n的展開式中,第3項的二項式系數(shù)比第2項的二項式系數(shù)大44,則展開式中的常數(shù)項是( 。

查看答案和解析>>

(2012•石景山區(qū)一模)如圖,已知平面α∩β=l,A、B是l上的兩個點,C、D在平面β內(nèi),且DA⊥α,CB⊥α,AD=4,AB=6,BC=8,在平面α上有一個動點P,使得∠APD=∠BPC,則P-ABCD體積的最大值是( 。

查看答案和解析>>

數(shù)   學(xué)(理科)    2009.4

一、選擇題:本大題共有10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

C

D

A

B

B

A

C

C

B

B

二、填空題:本大題共有7小題,每小題4分,共28分.

11. 1   12. 110   13. 78   14.  15.  16. 7   17.

三.解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

18.(Ⅰ)解:.……………………… 4分

,解得

所以函數(shù)的單調(diào)遞增區(qū)間為 .…………… 7分

(Ⅱ)解:由,得.故.……………… 10分

于是有 ,或,

.因,故.……………… 14分

19.(Ⅰ)解:恰好摸到兩個“心”字球的取法共有4種情形:

開心心,心開心,心心開,心心樂.

則恰好摸到2個“心”字球的概率是

.………………………………………6分

(Ⅱ)解:,

.…………………………………………10分

故取球次數(shù)的分布列為

1

2

3

.…………………………………………………14分

20.(Ⅰ)解:因在底面上的射影恰為B點,則⊥底面

所以就是與底面所成的角.

,故 ,

與底面所成的角是.……………………………………………3分

如圖,以A為原點建立空間直角坐標系,則

,

,

與棱BC所成的角是.…………………………………………………7分

(Ⅱ)解:設(shè),則.于是

舍去),

則P為棱的中點,其坐標為.…………………………………………9分

設(shè)平面的法向量為,則

,故.…………………11分

而平面的法向量是,

,

故二面角的平面角的余弦值是.………………………………14分

21.(Ⅰ)解:由題意知:,,,解得

故橢圓的方程為.…………………………………………………5分

   (Ⅱ)解:設(shè),

⑴若軸,可設(shè),因,則

,得,即

軸,可設(shè),同理可得.……………………7分

⑵當直線的斜率存在且不為0時,設(shè),

,消去得:

.………………………………………9分

,知

,即(記為①).…………11分

,可知直線的方程為

聯(lián)立方程組,得 (記為②).……………………13分

將②代入①,化簡得

綜合⑴、⑵,可知點的軌跡方程為.………………………15分

22.(Ⅰ)證明:當時,.令,則

遞增;若,遞減,

的極(最)大值點.于是

,即.故當時,有.………5分

(Ⅱ)解:對求導(dǎo),得

①若,,則上單調(diào)遞減,故合題意.

②若,

則必須,故當時,上單調(diào)遞增.

③若,的對稱軸,則必須

故當時,上單調(diào)遞減.

綜合上述,的取值范圍是.………………………………10分

(Ⅲ)解:令.則問題等價于

        找一個使成立,故只需滿足函數(shù)的最小值即可.

        因,

,

故當時,,遞減;當時,,遞增.

于是,

與上述要求相矛盾,故不存在符合條件的.……………………15分


同步練習(xí)冊答案