(Ⅱ)摸球次數(shù)的概率分布列和數(shù)學(xué)期望. 查看更多

 

題目列表(包括答案和解析)

北京市房山區(qū)2011年高三上學(xué)期期末統(tǒng)練試卷(數(shù)學(xué)理).doc
 

 (本小題共13分)

某同學(xué)設(shè)計一個摸獎游戲:箱內(nèi)有紅球3個,白球4個,黑球5個.每次任取一個,有放回地抽取3次為一次摸獎.至少有兩個紅球為一等獎,記2分;紅、白、黑球各一個為二等獎,記1分;否則沒有獎,記0分.

(I)求一次摸獎中一等獎的概率;

(II)求一次摸獎得分的分布列和期望.

查看答案和解析>>

從裝有大小相同的3個白球和3個紅球的袋中做摸球試驗,每次摸出一個球.如果摸出白球,則另從袋外取一個紅球替換該白球放回袋中,繼續(xù)做下一次摸球試驗;如果摸出紅球,則結(jié)束摸球試驗.
(Ⅰ)求一次摸球后結(jié)束試驗的概率P1與兩次摸球后結(jié)束試驗的概率P2;
(Ⅱ)記結(jié)束試驗時的摸球次數(shù)為ξ,求ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

從裝有大小相同的3個白球和3個紅球的袋中做摸球試驗,每次摸出一個球.如果摸出白球,則另從袋外取一個紅球替換該白球放回袋中,繼續(xù)做下一次摸球試驗;如果摸出紅球,則結(jié)束摸球試驗.
(Ⅰ)求一次摸球后結(jié)束試驗的概率P1與兩次摸球后結(jié)束試驗的概率P2
(Ⅱ)記結(jié)束試驗時的摸球次數(shù)為ξ,求ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

從裝有大小相同的3個白球和3個紅球的袋中做摸球試驗,每次摸出一個球.如果摸出白球,則另從袋外取一個紅球替換該白球放回袋中,繼續(xù)做下一次摸球試驗;如果摸出紅球,則結(jié)束摸球試驗.
(Ⅰ)求一次摸球后結(jié)束試驗的概率P1與兩次摸球后結(jié)束試驗的概率P2
(Ⅱ)記結(jié)束試驗時的摸球次數(shù)為ξ,求ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

從裝有大小相同的3個白球和3個紅球的袋中做摸球試驗,每次摸出一個球.如果摸出白球,則另從袋外取一個紅球替換該白球放回袋中,繼續(xù)做下一次摸球試驗;如果摸出紅球,則結(jié)束摸球試驗.
(Ⅰ)求一次摸球后結(jié)束試驗的概率P1與兩次摸球后結(jié)束試驗的概率P2;
(Ⅱ)記結(jié)束試驗時的摸球次數(shù)為ξ,求ξ的分布列及其數(shù)學(xué)期望Eξ.

查看答案和解析>>

數(shù)   學(xué)(理科)    2009.4

一、選擇題:本大題共有10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

C

D

A

B

B

A

C

C

B

B

二、填空題:本大題共有7小題,每小題4分,共28分.

11. 1   12. 110   13. 78   14.  15.  16. 7   17.

三.解答題:本大題共5小題,共72分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

18.(Ⅰ)解:.……………………… 4分

,解得

所以函數(shù)的單調(diào)遞增區(qū)間為 .…………… 7分

(Ⅱ)解:由,得.故.……………… 10分

于是有 ,或,

.因,故.……………… 14分

19.(Ⅰ)解:恰好摸到兩個“心”字球的取法共有4種情形:

開心心,心開心,心心開,心心樂.

則恰好摸到2個“心”字球的概率是

.………………………………………6分

(Ⅱ)解:,

.…………………………………………10分

故取球次數(shù)的分布列為

1

2

3

.…………………………………………………14分

20.(Ⅰ)解:因在底面上的射影恰為B點,則⊥底面

所以就是與底面所成的角.

,故 ,

與底面所成的角是.……………………………………………3分

如圖,以A為原點建立空間直角坐標(biāo)系,則

,

,

,

與棱BC所成的角是.…………………………………………………7分

(Ⅱ)解:設(shè),則.于是

舍去),

則P為棱的中點,其坐標(biāo)為.…………………………………………9分

設(shè)平面的法向量為,則

,故.…………………11分

而平面的法向量是,

,

故二面角的平面角的余弦值是.………………………………14分

21.(Ⅰ)解:由題意知:,,解得

故橢圓的方程為.…………………………………………………5分

   (Ⅱ)解:設(shè),

⑴若軸,可設(shè),因,則

,得,即

軸,可設(shè),同理可得.……………………7分

⑵當(dāng)直線的斜率存在且不為0時,設(shè)

,消去得:

.………………………………………9分

,知

,即(記為①).…………11分

,可知直線的方程為

聯(lián)立方程組,得 (記為②).……………………13分

將②代入①,化簡得

綜合⑴、⑵,可知點的軌跡方程為.………………………15分

22.(Ⅰ)證明:當(dāng)時,.令,則

遞增;若,遞減,

的極(最)大值點.于是

,即.故當(dāng)時,有.………5分

(Ⅱ)解:對求導(dǎo),得

①若,則上單調(diào)遞減,故合題意.

②若,

則必須,故當(dāng)時,上單調(diào)遞增.

③若,的對稱軸,則必須

故當(dāng)時,上單調(diào)遞減.

綜合上述,的取值范圍是.………………………………10分

(Ⅲ)解:令.則問題等價于

        找一個使成立,故只需滿足函數(shù)的最小值即可.

        因,

,

故當(dāng)時,遞減;當(dāng)時,,遞增.

于是,

與上述要求相矛盾,故不存在符合條件的.……………………15分


同步練習(xí)冊答案
<form id="ttq37"></form>

  • <ins id="ttq37"><xmp id="ttq37">