(Ⅱ)記.求數(shù)列的前項(xiàng)和為. 查看更多

 

題目列表(包括答案和解析)

數(shù)列的前項(xiàng)和記為.

(1)求數(shù)列的通項(xiàng)公式;

(2)等差數(shù)列的前項(xiàng)和有最大值,且,又、、成等比數(shù)列,求.

 

查看答案和解析>>

若數(shù)列的前項(xiàng)和為,對(duì)任意正整數(shù)都有,記

(1)求,的值;

(2)求數(shù)列的通項(xiàng)公式;

(3)若求證:對(duì)任意

 

查看答案和解析>>

若數(shù)列的前項(xiàng)和為,對(duì)任意正整數(shù)都有,記

(1)求,的值;

(2)求數(shù)列的通項(xiàng)公式;

(3)若求證:對(duì)任意

 

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為,點(diǎn)在直線(xiàn)上,.(1)證明數(shù)列為等比數(shù)列,并求出其通項(xiàng);(2)設(shè),記,求數(shù)列的前

 

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為.已知,

(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)記為數(shù)列的前項(xiàng)和,求

 

查看答案和解析>>

<center id="6p6vo"></center>

  • 2009.4

     

    1-10.CDABB   CDBDA

    11.       12. 4        13.        14.       15.  

    16.   17.

    18.解:(Ⅰ)由題意,有,

    .…………………………5分

    ,得

    ∴函數(shù)的單調(diào)增區(qū)間為 .……………… 7分

    (Ⅱ)由,得

    .           ……………………………………………… 10分

    ,∴.      ……………………………………………… 14分

    19.解:(Ⅰ)設(shè)數(shù)列的公比為,由,.             …………………………………………………………… 4分

    ∴數(shù)列的通項(xiàng)公式為.      ………………………………… 6分

    (Ⅱ) ∵,    ,      ①

    .      ②         

    ①-②得: …………………12分

                 得,                           …………………14分

    20.解:(I)取中點(diǎn),連接.

    分別是梯形的中位線(xiàn)

    ,又

    ∴面,又

    .……………………… 7分

    (II)由三視圖知,是等腰直角三角形,

         連接

         在面AC1上的射影就是,∴

         ,

    ∴當(dāng)的中點(diǎn)時(shí),與平面所成的角

      是.           ………………………………14分

                                                   

    21.解:(Ⅰ)由題意:.

    為點(diǎn)M的軌跡方程.     ………………………………………… 4分

    (Ⅱ)由題易知直線(xiàn)l1,l2的斜率都存在,且不為0,不妨設(shè),MN方程為 聯(lián)立得:,設(shè)6ec8aac122bd4f6e

        ∴由拋物線(xiàn)定義知:|MN|=|MF|+|NF|…………7分

           同理RQ的方程為,求得.  ………………………… 9分

    .  ……………………………… 13分

    當(dāng)且僅當(dāng)時(shí)取“=”,故四邊形MRNQ的面積的最小值為32.………… 15分

    22. 解:(Ⅰ),由題意得,

    所以                    ………………………………………………… 4分

    (Ⅱ)證明:令,,

    得:……………………………………………… 7分

    (1)當(dāng)時(shí),,在,即上單調(diào)遞增,此時(shí).

              …………………………………………………………… 10分

    (2)當(dāng)時(shí),,在,在,在,即上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,或者,此時(shí)只要或者即可,得,

    .                        …………………………………………14分

    由 (1) 、(2)得 .

    ∴綜上所述,對(duì)于,使得成立. ………………15分


    同步練習(xí)冊(cè)答案