所以的取值范圍為 -----------------------------6分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

給出下列命題:
①函數(shù)的最小值為5;
②若直線y=kx+1與曲線y=|x|有兩個交點,則k的取值范圍是-1≤k≤1;
③若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長為2,則m的傾斜角可以是15°或75°
④設(shè)Sn是公差為d(d≠0)的無窮等差數(shù)列{an}的前n項和,若對任意n∈N*,均有Sn>0,則數(shù)列{Sn}是遞增數(shù)列
⑤設(shè)△ABC的內(nèi)角A.B.C所對的邊分別為a,b,c,若三邊的長為連續(xù)的三個正整數(shù),且A>B>C,3b=20acosA則sinA:sinB:sinC為6:5:4
其中所有正確命題的序號是   

查看答案和解析>>

已知△OFQ的面積為2
6
,且
OF
FQ
=m

(1)設(shè)
6
<m<4
6
,求向量
OF
FQ
的夾角θ
正切值的取值范圍;
(2)設(shè)以O(shè)為中心,F(xiàn)為焦點的雙曲線經(jīng)過點Q(如圖),|
OF
|=c,m=(
6
4
-1)c2
,當|
OQ
|
取得最小值時,求此雙曲線的方程.
(3)設(shè)F1為(2)中所求雙曲線的左焦點,若A、B分別為此雙曲線漸近線l1、l2上的動點,且2|AB|=5|F1F|,求線段AB的中點M的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>

已知函數(shù)處取得極值2.

⑴ 求函數(shù)的解析式;

⑵ 若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)m的取值范圍;

【解析】第一問中利用導(dǎo)數(shù)

又f(x)在x=1處取得極值2,所以

所以

第二問中,

因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得

解:⑴ 求導(dǎo),又f(x)在x=1處取得極值2,所以,即,所以…………6分

⑵ 因為,又f(x)的定義域是R,所以由,得-1<x<1,所以f(x)在[-1,1]上單調(diào)遞增,在上單調(diào)遞減,當f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,則有,得,                …………9分

當f(x)在區(qū)間(m,2m+1)上單調(diào)遞減,則有 

                                                …………12分

.綜上所述,當時,f(x)在(m,2m+1)上單調(diào)遞增,當時,f(x)在(m,2m+1)上單調(diào)遞減;則實數(shù)m的取值范圍是

 

查看答案和解析>>

交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,交通指數(shù)取值范圍為0~10,分為五個級別,0~2 暢 通;2~4 基本暢通;4~6 輕度擁堵;6~8 中度擁堵;8~10 嚴重擁堵 早高峰時段,從昆明市交通指揮中心隨機選取了二環(huán)以內(nèi)的50個交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的直方圖如圖

(1)據(jù)此估計,早高峰二環(huán)以內(nèi)的三個路段至少有一個是嚴重擁堵的概率是多少?

(2)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為36分鐘;中度擁堵為42分鐘;嚴重擁堵為60分鐘,求此人所用時間的數(shù)學(xué)期望

 

查看答案和解析>>


同步練習(xí)冊答案