題目列表(包括答案和解析)
已知函數(shù)
(1)若函數(shù)的圖象經(jīng)過P(3,4)點,求a的值;
(2)比較大小,并寫出比較過程;
(3)若,求a的值.
【解析】本試題主要考查了指數(shù)函數(shù)的性質(zhì)的運(yùn)用。第一問中,因為函數(shù)的圖象經(jīng)過P(3,4)點,所以,解得,因為,所以.
(2)問中,對底數(shù)a進(jìn)行分類討論,利用單調(diào)性求解得到。
(3)中,由知,.,指對數(shù)互化得到,,所以,解得所以, 或 .
解:⑴∵函數(shù)的圖象經(jīng)過∴,即. … 2分
又,所以. ………… 4分
⑵當(dāng)時,;
當(dāng)時,. ……………… 6分
因為,,
當(dāng)時,在上為增函數(shù),∵,∴.
即.當(dāng)時,在上為減函數(shù),
∵,∴.即. …………………… 8分
⑶由知,.所以,(或).
∴.∴, … 10分
∴ 或 ,所以, 或 .
設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點也在函數(shù)g(x)的圖像上,且在此點處f(x)與g(x)有公切線.[來源:學(xué)?。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]
【解析】第一問解:因為f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
第二問,由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時,,有;當(dāng)時,,有;當(dāng)x=1時,,有
解:因為f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時,,有;當(dāng)時,,有;當(dāng)x=1時,,有
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。
(1)問中∵,∴,…………………1分
∵,得到三角關(guān)系是,結(jié)合,解得。
(2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②聯(lián)立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,從而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
綜上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
綜上可得 …………………12分
(若用,又∵ ∴ ,
已知向量,且,A為銳角,求:
(1)角A的大;
(2)求函數(shù)的單調(diào)遞增區(qū)間和值域.
【解析】第一問中利用,解得 又A為銳角
第二問中,
由 解得單調(diào)遞增區(qū)間為
解:(1) ……………………3分
又A為銳角
……………………5分
(2)
……………………8分
由 解得單調(diào)遞增區(qū)間為
……………………10分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com